BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1965 related articles for article (PubMed ID: 24842622)

  • 21. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
    Fatma S; Hameed A; Noman M; Ahmed T; Shahid M; Tariq M; Sohail I; Tabassum R
    Protein Pept Lett; 2018; 25(2):148-163. PubMed ID: 29359659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone.
    Luterbacher JS; Rand JM; Alonso DM; Han J; Youngquist JT; Maravelias CT; Pfleger BF; Dumesic JA
    Science; 2014 Jan; 343(6168):277-80. PubMed ID: 24436415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bio-refinery as the bio-inspired process to bulk chemicals.
    Sanders J; Scott E; Weusthuis R; Mooibroek H
    Macromol Biosci; 2007 Feb; 7(2):105-17. PubMed ID: 17295397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic conversion of renewable biomass resources to fuels and chemicals.
    Serrano-Ruiz JC; West RM; Dumesic JA
    Annu Rev Chem Biomol Eng; 2010; 1():79-100. PubMed ID: 22432574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views.
    Chen Z; Chen L; Khoo KS; Gupta VK; Sharma M; Show PL; Yap PS
    Biotechnol Adv; 2023 Dec; 69():108265. PubMed ID: 37783293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries.
    Silveira MH; Morais AR; da Costa Lopes AM; Olekszyszen DN; Bogel-Łukasik R; Andreaus J; Pereira Ramos L
    ChemSusChem; 2015 Oct; 8(20):3366-90. PubMed ID: 26365899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalyst design for biorefining.
    Wilson K; Lee AF
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2061):. PubMed ID: 26755755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lignin valorization: improving lignin processing in the biorefinery.
    Ragauskas AJ; Beckham GT; Biddy MJ; Chandra R; Chen F; Davis MF; Davison BH; Dixon RA; Gilna P; Keller M; Langan P; Naskar AK; Saddler JN; Tschaplinski TJ; Tuskan GA; Wyman CE
    Science; 2014 May; 344(6185):1246843. PubMed ID: 24833396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery.
    Galkin MV; Samec JS
    ChemSusChem; 2016 Jul; 9(13):1544-58. PubMed ID: 27273230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass.
    Wheeldon I; Christopher P; Blanch H
    Curr Opin Biotechnol; 2017 Jun; 45():127-135. PubMed ID: 28365403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Green chemistry, biofuels, and biorefinery.
    Clark JH; Luque R; Matharu AS
    Annu Rev Chem Biomol Eng; 2012; 3():183-207. PubMed ID: 22468603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expanding the Boundary of Biorefinery: Organonitrogen Chemicals from Biomass.
    Chen X; Song S; Li H; Gözaydın G; Yan N
    Acc Chem Res; 2021 Apr; 54(7):1711-1722. PubMed ID: 33576600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.
    Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A
    Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery.
    Zverlov VV; Berezina O; Velikodvorskaya GA; Schwarz WH
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):587-97. PubMed ID: 16685494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of biofuel processes utilising separate lignin and carbohydrate processing.
    Melin K; Kohl T; Koskinen J; Hurme M
    Bioresour Technol; 2015 Sep; 192():397-409. PubMed ID: 26056782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production.
    Lanzafame P; Centi G; Perathoner S
    Chem Soc Rev; 2014 Nov; 43(22):7562-80. PubMed ID: 24577063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water-based woody biorefinery.
    Amidon TE; Liu S
    Biotechnol Adv; 2009; 27(5):542-50. PubMed ID: 19393733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. C1-carbon sources for chemical and fuel production by microbial gas fermentation.
    Dürre P; Eikmanns BJ
    Curr Opin Biotechnol; 2015 Dec; 35():63-72. PubMed ID: 25841103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 99.