These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24842682)

  • 1. Absence of Schroeder's paradox in a nanostructured block copolymer electrolyte membrane.
    Beers KM; Yakovlev S; Jackson A; Wang X; Hexemer A; Downing KH; Balsara NP
    J Phys Chem B; 2014 Jun; 118(24):6785-91. PubMed ID: 24842682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of morphology of nanoscale hydrated channels on proton conductivity in block copolymer electrolyte membranes.
    Chen XC; Wong DT; Yakovlev S; Beers KM; Downing KH; Balsara NP
    Nano Lett; 2014 Jul; 14(7):4058-64. PubMed ID: 24854241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-Nafion equilibria. absence of Schroeder's paradox.
    Onishi LM; Prausnitz JM; Newman J
    J Phys Chem B; 2007 Aug; 111(34):10166-73. PubMed ID: 17685645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation.
    Park MJ; Downing KH; Jackson A; Gomez ED; Minor AM; Cookson D; Weber AZ; Balsara NP
    Nano Lett; 2007 Nov; 7(11):3547-52. PubMed ID: 17960948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsecond Morphological Changes in Nafion during Water Uptake Detected by Small-Angle X-ray Scattering.
    Kusoglu A; Modestino MA; Hexemer A; Segalman RA; Weber AZ
    ACS Macro Lett; 2012 Jan; 1(1):33-36. PubMed ID: 35578448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes.
    Song J; Han OH; Han S
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3615-20. PubMed ID: 25630609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane.
    Hara N; Ohashi H; Ito T; Yamaguchi T
    J Phys Chem B; 2009 Apr; 113(14):4656-63. PubMed ID: 19290602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmented tetrasulfonated copoly(arylene ether sulfone)s: improving proton transport properties by extending the ionic sequence.
    Takamuku S; Weiber EA; Jannasch P
    ChemSusChem; 2013 Feb; 6(2):308-19. PubMed ID: 23307760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration of ionomers and Schroeder's paradox in Nafion.
    Freger V
    J Phys Chem B; 2009 Jan; 113(1):24-36. PubMed ID: 19072615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature- and humidity-controlled SAXS analysis of proton-conductive ionomer membranes for fuel cells.
    Mochizuki T; Kakinuma K; Uchida M; Deki S; Watanabe M; Miyatake K
    ChemSusChem; 2014 Mar; 7(3):729-33. PubMed ID: 24578201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions.
    Kim SY; Kim S; Park MJ
    Nat Commun; 2010 Oct; 1():88. PubMed ID: 20981017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a humidity controlled sample stage for simultaneous conductivity and synchrotron X-ray scattering measurements.
    Jackson A; Beers KM; Chen XC; Hexemer A; Pople JA; Kerr JB; Balsara NP
    Rev Sci Instrum; 2013 Jul; 84(7):075114. PubMed ID: 23902113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers.
    Kim YS; Pivovar BS
    Annu Rev Chem Biomol Eng; 2010; 1():123-48. PubMed ID: 22432576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane.
    Liew JWY; Loh KS; Ahmad A; Lim KL; Wan Daud WR
    PLoS One; 2017; 12(9):e0185313. PubMed ID: 28957374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells.
    Xu F; Mu S
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1169-80. PubMed ID: 24749420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swelling of individual nanodomains in hydrated block copolymer electrolyte membranes.
    Chen XC; Jiang X; Balsara NP
    J Chem Phys; 2018 Oct; 149(16):163325. PubMed ID: 30384742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate measurement of the through-plane water content of proton-exchange membranes using neutron radiography.
    Hussey DS; Spernjak D; Weber AZ; Mukundan R; Fairweather J; Brosha EL; Davey J; Spendelow JS; Jacobson DL; Borup RL
    J Appl Phys; 2012; 112(10):. PubMed ID: 35528323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current-induced formation of gradient crystals in block copolymer electrolytes.
    Mullin SA; Stone GM; Teran AA; Hallinan DT; Hexemer A; Balsara NP
    Nano Lett; 2012 Jan; 12(1):464-8. PubMed ID: 22191995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAXS/DSC/WAXD study of temperature evolution in nanocomposite polymer electrolytes with different nanofillers.
    Turković A; Dubcek P; Juraić K; Bernstorff S
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8686-9. PubMed ID: 23421266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanically and structurally robust sulfonated block copolymer membranes for water purification applications.
    Yeo J; Kim SY; Kim S; Ryu DY; Kim TH; Park MJ
    Nanotechnology; 2012 Jun; 23(24):245703. PubMed ID: 22641347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.