BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 24843070)

  • 1. Autonomous CaMKII requires further stimulation by Ca2+/calmodulin for enhancing synaptic strength.
    Barcomb K; Buard I; Coultrap SJ; Kulbe JR; O'Leary H; Benke TA; Bayer KU
    FASEB J; 2014 Aug; 28(8):3810-9. PubMed ID: 24843070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A significant but rather mild contribution of T286 autophosphorylation to Ca2+/CaM-stimulated CaMKII activity.
    Coultrap SJ; Barcomb K; Bayer KU
    PLoS One; 2012; 7(5):e37176. PubMed ID: 22615928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotides and phosphorylation bi-directionally modulate Ca2+/calmodulin-dependent protein kinase II (CaMKII) binding to the N-methyl-D-aspartate (NMDA) receptor subunit GluN2B.
    O'Leary H; Liu WH; Rorabaugh JM; Coultrap SJ; Bayer KU
    J Biol Chem; 2011 Sep; 286(36):31272-81. PubMed ID: 21768120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B.
    Bayer KU; LeBel E; McDonald GL; O'Leary H; Schulman H; De Koninck P
    J Neurosci; 2006 Jan; 26(4):1164-74. PubMed ID: 16436603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation status of the NR2B subunit of NMDA receptor regulates its interaction with calcium/calmodulin-dependent protein kinase II.
    Raveendran R; Devi Suma Priya S; Mayadevi M; Steephan M; Santhoshkumar TR; Cheriyan J; Sanalkumar R; Pradeep KK; James J; Omkumar RV
    J Neurochem; 2009 Jul; 110(1):92-105. PubMed ID: 19453375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic activity of CaMKII is not required for its interaction with the glutamate receptor subunit GluN2B.
    Barcomb K; Coultrap SJ; Bayer KU
    Mol Pharmacol; 2013 Dec; 84(6):834-43. PubMed ID: 24056996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CaMKII T286 phosphorylation has distinct essential functions in three forms of long-term plasticity.
    Cook SG; Rumian NL; Bayer KU
    J Biol Chem; 2022 Sep; 298(9):102299. PubMed ID: 35872016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning.
    Yamagata Y; Kobayashi S; Umeda T; Inoue A; Sakagami H; Fukaya M; Watanabe M; Hatanaka N; Totsuka M; Yagi T; Obata K; Imoto K; Yanagawa Y; Manabe T; Okabe S
    J Neurosci; 2009 Jun; 29(23):7607-18. PubMed ID: 19515929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective post-insult neuroprotection by a novel Ca(2+)/ calmodulin-dependent protein kinase II (CaMKII) inhibitor.
    Vest RS; O'Leary H; Coultrap SJ; Kindy MS; Bayer KU
    J Biol Chem; 2010 Jul; 285(27):20675-82. PubMed ID: 20424167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous CaMKII can promote either long-term potentiation or long-term depression, depending on the state of T305/T306 phosphorylation.
    Pi HJ; Otmakhov N; Lemelin D; De Koninck P; Lisman J
    J Neurosci; 2010 Jun; 30(26):8704-9. PubMed ID: 20592192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-calmodulin signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal, fast spiking rat hippocampal CA1 neurons.
    Wang JH; Kelly P
    J Physiol; 2001 Jun; 533(Pt 2):407-22. PubMed ID: 11389201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual mechanism of a natural CaMKII inhibitor.
    Vest RS; Davies KD; O'Leary H; Port JD; Bayer KU
    Mol Biol Cell; 2007 Dec; 18(12):5024-33. PubMed ID: 17942605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CaMKII regulation in information processing and storage.
    Coultrap SJ; Bayer KU
    Trends Neurosci; 2012 Oct; 35(10):607-18. PubMed ID: 22717267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction with the NMDA receptor locks CaMKII in an active conformation.
    Bayer KU; De Koninck P; Leonard AS; Hell JW; Schulman H
    Nature; 2001 Jun; 411(6839):801-5. PubMed ID: 11459059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential stimulus-dependent synaptic recruitment of CaMKIIα by intracellular determinants of GluN2B.
    She K; Rose JK; Craig AM
    Mol Cell Neurosci; 2012 Nov; 51(3-4):68-78. PubMed ID: 22902837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanism for Ca2+/calmodulin-dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association.
    Hudmon A; Lebel E; Roy H; Sik A; Schulman H; Waxham MN; De Koninck P
    J Neurosci; 2005 Jul; 25(30):6971-83. PubMed ID: 16049173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CaMKII/GluN2B Protein Interaction Maintains Synaptic Strength.
    Barcomb K; Hell JW; Benke TA; Bayer KU
    J Biol Chem; 2016 Jul; 291(31):16082-9. PubMed ID: 27246855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CaMKII-mediated phosphorylation of GluN2B regulates recombinant NMDA receptor currents in a chloride-dependent manner.
    Tavalin SJ; Colbran RJ
    Mol Cell Neurosci; 2017 Mar; 79():45-52. PubMed ID: 27998718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2.
    Robison AJ; Bass MA; Jiao Y; MacMillan LB; Carmody LC; Bartlett RK; Colbran RJ
    J Biol Chem; 2005 Oct; 280(42):35329-36. PubMed ID: 16120608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential modulation of Ca2+/calmodulin-dependent protein kinase II activity by regulated interactions with N-methyl-D-aspartate receptor NR2B subunits and alpha-actinin.
    Robison AJ; Bartlett RK; Bass MA; Colbran RJ
    J Biol Chem; 2005 Nov; 280(47):39316-23. PubMed ID: 16172120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.