These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24843178)

  • 1. Effects of differential habitat warming on complex communities.
    Tunney TD; McCann KS; Lester NP; Shuter BJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8077-82. PubMed ID: 24843178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator.
    Guzzo MM; Blanchfield PJ; Rennie MD
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9912-9917. PubMed ID: 28808011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecosystem response to earlier ice break-up date: Climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use.
    Caldwell TJ; Chandra S; Feher K; Simmons JB; Hogan Z
    Glob Chang Biol; 2020 Oct; 26(10):5475-5491. PubMed ID: 32602183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A freshwater predator hit twice by the effects of warming across trophic levels.
    Jonsson T; Setzer M
    Nat Commun; 2015 Jan; 6():5992. PubMed ID: 25586020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal variability alters the impact of climate warming on consumer-resource systems.
    Fey SB; Vasseur DA
    Ecology; 2016 Jul; 97(7):1690-1699. PubMed ID: 27859173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bottom-up and top-down effects of browning and warming on shallow lake food webs.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food web structure shaped by habitat size and climate across a latitudinal gradient.
    Romero GQ; Piccoli GC; de Omena PM; Gonçalves-Souza T
    Ecology; 2016 Oct; 97(10):2705-2715. PubMed ID: 27859108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blinded by the light? Nearshore energy pathway coupling and relative predator biomass increase with reduced water transparency across lakes.
    Tunney TD; McCann KS; Jarvis L; Lester NP; Shuter BJ
    Oecologia; 2018 Apr; 186(4):1031-1041. PubMed ID: 29388026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predators drive community reorganization during experimental range shifts.
    Jones NT; Symons CC; Cavalheri H; Pedroza-Ramos A; Shurin JB
    J Anim Ecol; 2020 Oct; 89(10):2378-2388. PubMed ID: 32592594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trophic interactions modify the temperature dependence of community biomass and ecosystem function.
    Garzke J; Connor SJ; Sommer U; O'Connor MI
    PLoS Biol; 2019 Jun; 17(6):e2006806. PubMed ID: 31181076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes.
    Gerten D; Adrian R
    ScientificWorldJournal; 2002 Mar; 2():586-606. PubMed ID: 12805986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation.
    Ullah H; Nagelkerken I; Goldenberg SU; Fordham DA
    PLoS Biol; 2018 Jan; 16(1):e2003446. PubMed ID: 29315309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food web expansion and contraction in response to changing environmental conditions.
    Tunney TD; McCann KS; Lester NP; Shuter BJ
    Nat Commun; 2012; 3():1105. PubMed ID: 23033081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warming winters in lakes: Later ice onset promotes consumer overwintering and shapes springtime planktonic food webs.
    Hébert MP; Beisner BE; Rautio M; Fussmann GF
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34810251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.
    Lin Q; Xu L; Hou J; Liu Z; Jeppesen E; Han BP
    Water Res; 2017 Nov; 124():618-629. PubMed ID: 28822342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increases in disturbance and reductions in habitat size interact to suppress predator body size.
    Jellyman PG; McHugh PA; McIntosh AR
    Glob Chang Biol; 2014 May; 20(5):1550-8. PubMed ID: 24133009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warming and top predator loss drive direct and indirect effects on multiple trophic groups within and across ecosystems.
    Antiqueira PAP; Petchey OL; Rezende F; Machado Velho LF; Rodrigues LC; Romero GQ
    J Anim Ecol; 2022 Feb; 91(2):428-442. PubMed ID: 34808001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing temperature and productivity change biomass, trophic pyramids and community-level omega-3 fatty acid content in subarctic lake food webs.
    Keva O; Taipale SJ; Hayden B; Thomas SM; Vesterinen J; Kankaala P; Kahilainen KK
    Glob Chang Biol; 2021 Jan; 27(2):282-296. PubMed ID: 33124178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of climate warming and pharmaceuticals on a tri-trophic freshwater food web.
    Duchet C; Grabicová K; Kolar V; Lepšová O; Švecová H; Csercsa A; Zdvihalová B; Randák T; Boukal DS
    Water Res; 2024 Feb; 250():121053. PubMed ID: 38159539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.