BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2484352)

  • 1. Transport of ferrous iron and lactate production in Bifidobacterium bifidum var. pennsylvanicus.
    Bezkorovainy A; Solberg L; Miller-Catchpole R; Poch M
    Biol Trace Elem Res; 1988; 17():123-37. PubMed ID: 2484352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferrous iron uptake by Bifidobacterium bifidum var. pennsylvanicus: the effect of metals and metabolic inhibitors.
    Bezkorovainy A; Solberg L; Poch M; Miller-Catchpole R
    Int J Biochem; 1987; 19(6):517-22. PubMed ID: 3038634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of ferric and ferrous iron uptake by Bifidobacterium bifidum var. pennsylvanicus.
    Bezkorovainy A; Topouzian N; Miller-Catchpole R
    Clin Physiol Biochem; 1986; 4(2):150-8. PubMed ID: 3698473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron uptake by the microaerophilic anaerobe Bifidobacterium bifidum var. pennsylvanicus.
    Bezkorovainy A
    Clin Physiol Biochem; 1984; 2(6):291-7. PubMed ID: 6518721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferrous iron uptake by Bifidobacterium breve.
    Bezkorovainy A; Solberg L
    Biol Trace Elem Res; 1989 Jun; 20(3):251-67. PubMed ID: 2484758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressive effects of bifidobacteria on lipid peroxidation in the colonic mucosa of iron-overloaded mice.
    Ito M; Sawada H; Ohishi K; Yoshida Y; Yokoi W; Watanabe T; Yokokura T
    J Dairy Sci; 2001 Jul; 84(7):1583-9. PubMed ID: 11467806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of various metals and calcium metabolism inhibitors on the growth of Bifidobacterium bifidum var. pennsylvanicus.
    Topouzian N; Joseph BJ; Bezkorovainy A
    J Pediatr Gastroenterol Nutr; 1984; 3(1):137-42. PubMed ID: 6694042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncoupling of growth and acids production in Bifidobacterium ssp.
    Desjardins ML; Roy D; Toupin C; Goulet J
    J Dairy Sci; 1990 Jun; 73(6):1478-84. PubMed ID: 2384614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii.
    Bunesova V; Lacroix C; Schwab C
    Microb Ecol; 2018 Jan; 75(1):228-238. PubMed ID: 28721502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate preferences of Bifidobacterium species isolated from the human gut.
    Palframan RJ; Gibson GR; Rastall RA
    Curr Issues Intest Microbiol; 2003 Sep; 4(2):71-5. PubMed ID: 14503691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the lactose transport system in the strain Bifidobacterium bifidum DSM 20082.
    Krzewinski F; Brassart C; Gavini F; Bouquelet S
    Curr Microbiol; 1996 Jun; 32(6):301-7. PubMed ID: 8640105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of oligosaccharides in yogurt containing bifidobacteria and yogurt cultures.
    Lamoureux L; Roy D; Gauthier SF
    J Dairy Sci; 2002 May; 85(5):1058-69. PubMed ID: 12086039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performances of new isolates of Bifidobacterium on fermentation of soymilk.
    Havas P; Kun S; Perger-Mészáros I; Rezessy-Szabó JM; Nguyen QD
    Acta Microbiol Immunol Hung; 2015 Dec; 62(4):463-75. PubMed ID: 26689881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Production of the therapeutic and prophylactic preparation enterobifidin on the basis of Bifidobacterium adolescentis MC-42].
    Novik GI; Astapovich NI; Bogdanovskaia ZhN; Riabaia NE
    Prikl Biokhim Mikrobiol; 2000; 36(1):104-10. PubMed ID: 10752094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of metal chelators and other metabolic inhibitors on the growth of Bifidobacterium bifidus var. Pennsylvanicus.
    Bezkorovainy A; Topouzian N
    Clin Biochem; 1981 Jun; 14(3):135-41. PubMed ID: 6794942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria.
    Ward RE; Niñonuevo M; Mills DA; Lebrilla CB; German JB
    Mol Nutr Food Res; 2007 Nov; 51(11):1398-405. PubMed ID: 17966141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Mg2+ and Ca2+ on Fe2+ uptake by Bifidobacterium thermophilum.
    Kot E; Bezkorovainy A
    Int J Biochem; 1993 Jul; 25(7):1029-33. PubMed ID: 8365544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferrous iron transport in Streptococcus mutans.
    Evans SL; Arceneaux JE; Byers BR; Martin ME; Aranha H
    J Bacteriol; 1986 Dec; 168(3):1096-9. PubMed ID: 2946662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Component and functional mechanism of the ferrous iron acquisition system in gram-negative bacteria - A review].
    Feng Y; Liu M; Cheng A
    Wei Sheng Wu Xue Bao; 2016 Jul; 56(7):1061-9. PubMed ID: 29732873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron.
    Miethke M; Monteferrante CG; Marahiel MA; van Dijl JM
    Biochim Biophys Acta; 2013 Oct; 1833(10):2267-78. PubMed ID: 23764491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.