BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2484429)

  • 21. Effects of vitamin E deficiency and non-biological antioxidant (DPPD) on the function of the pituitary-gonadal axis of the rat.
    Akazawa N; Mikami S; Kimura S
    J Nutr Sci Vitaminol (Tokyo); 1986 Feb; 32(1):41-54. PubMed ID: 3012051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered potassium permeability in vitamin E-deficient rat erythrocytes.
    Harm W; Deamer DW
    Physiol Chem Phys; 1977; 9(6):501-12. PubMed ID: 614591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allyl alcohol-induced hemolysis and its relation to iron release and lipid peroxidation.
    Ferrali M; Ciccoli L; Comporti M
    Biochem Pharmacol; 1989 Jun; 38(11):1819-25. PubMed ID: 2735939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lysis of vitamin E-deficient rat erythrocytes by rat liver microsomes in an NADPH-dependent process in the presence of inhibitors of lipid peroxidation.
    Willis RJ
    Aust J Exp Biol Med Sci; 1983 Feb; 61(Pt 1):139-45. PubMed ID: 6409067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in membrane constituents and chemiluminescence in vitamin E-deficient red blood cells induced by the xanthine oxidase reaction.
    Yasuda H; Miki M; Takenaka Y; Tamai H; Mino M
    Arch Biochem Biophys; 1989 Jul; 272(1):81-7. PubMed ID: 2544145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of vitamin E or selenium on the oxidant-antioxidant balance in rats.
    Doni MG; Falanga A; Delaini F; Vicenzi E; Tomasiak M; Donati MB
    Br J Exp Pathol; 1984 Feb; 65(1):75-80. PubMed ID: 6421305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cadmium-induced testes oxidative damage in rats can be influenced by dietary zinc intake.
    Oteiza PI; Adonaylo VN; Keen CL
    Toxicology; 1999 Sep; 137(1):13-22. PubMed ID: 10513996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mobility and reactivity of maleimide-binding proteins in the rat erythrocyte membrane. Effects of dietary zinc deficiency and incubation with zinc in vitro.
    Kubow SJ; Bettger WJ
    Can J Physiol Pharmacol; 1988 Jan; 66(1):66-71. PubMed ID: 3370537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of oxidative lysis and lipid peroxidation of vitamin E-deficient erythrocytes.
    Krishnamurthy S; Bai NJ; George T
    Indian J Biochem Biophys; 1984 Dec; 21(6):361-4. PubMed ID: 6545522
    [No Abstract]   [Full Text] [Related]  

  • 30. Effect of vitamin E on the binding of hemoglobin to the red cell membrane.
    Sayare M; Fikiet M; Paulus J
    Ann N Y Acad Sci; 1982; 393():251-62. PubMed ID: 6959558
    [No Abstract]   [Full Text] [Related]  

  • 31. [Malondialdehyde production and erythrocyte membrane resistance to free radicals, in function of adequate or inadequate protein intake, associated with different oils (sunflower, soybean, coconut, salmon)].
    M'Fouara JC; Bouziane MN; Prost J; Belleville J
    C R Seances Soc Biol Fil; 1992; 186(3):263-77. PubMed ID: 1493581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Observations on the mechanism of the oxygen/dialuric acid-induced hemolysis of vitamin e-deficient rat red blood cells and the protective roles of catalase and superoxide dismutase.
    Fee JA; Bergamini R; Briggs RG
    Arch Biochem Biophys; 1975 Jul; 169(1):160-7. PubMed ID: 168815
    [No Abstract]   [Full Text] [Related]  

  • 33. Alterations in Ca²⁺ homeostasis and oxidative damage induced by ethion in erythrocytes of Wistar rats: ameliorative effect of vitamin E.
    Bhatti GK; Bhatti JS; Kiran R; Sandhir R
    Environ Toxicol Pharmacol; 2011 May; 31(3):378-86. PubMed ID: 21787708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection and localization of lipid peroxidation in selenium- and vitamin E-deficient rats using F2-isoprostanes.
    Awad JA; Morrow JD; Hill KE; Roberts LJ; Burk RF
    J Nutr; 1994 Jun; 124(6):810-6. PubMed ID: 8207538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of oxidative hemolysis and lipid peroxidation by mepacrine.
    Nagai J; Tanaka M; Hibasami H; Ikeda T
    J Biochem; 1981 Apr; 89(4):1143-8. PubMed ID: 7251575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DIETARY FAT AND THE STRUCTURE AND PROPERTIES OF RAT ERYTHROCYTES.II. STABILITY OF THE ERYTHROCYTE.
    Walker BL; Kummerow FA
    J Nutr; 1964 Mar; 82(3):323-8. PubMed ID: 14133361
    [No Abstract]   [Full Text] [Related]  

  • 37. Resistance to oxidation of native lipoproteins and erythrocyte membrane lipids in rats with iron overload.
    Antébi H; Pagès N; Zimmermann L; Bourcier C; Fléchet B; Alcindor LG
    Ann Nutr Metab; 1995; 39(1):63-8. PubMed ID: 7872657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidation as a possible mechanism of cellular aging: vitamin E deficiency causes premature aging and IgG binding to erythrocytes.
    Kay MM; Bosman GJ; Shapiro SS; Bendich A; Bassel PS
    Proc Natl Acad Sci U S A; 1986 Apr; 83(8):2463-7. PubMed ID: 3458208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Food restriction increases the protection of erythrocytes against the hemolysis induced by peroxyl radicals.
    Pieri C; Moroni F; Marra M
    Mech Ageing Dev; 1996 May; 87(1):15-23. PubMed ID: 8735903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Free-radical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by alpha-tocopherol.
    Miki M; Tamai H; Mino M; Yamamoto Y; Niki E
    Arch Biochem Biophys; 1987 Nov; 258(2):373-80. PubMed ID: 3674881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.