These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24844675)

  • 21. Highly Fluorescent Pyridinium Betaines for Light Harvesting.
    Xu J; Zhang B; Jansen M; Goerigk L; Wong WWH; Ritchie C
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13882-13886. PubMed ID: 28695638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-Unity Emitting Copper-Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators.
    Sharma M; Gungor K; Yeltik A; Olutas M; Guzelturk B; Kelestemur Y; Erdem T; Delikanli S; McBride JR; Demir HV
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28605062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gain investigation of Perylene-Red-doped PMMA for stimulated luminescent solar concentrators.
    Kaysir MR; Fleming S; Argyros A
    Appl Opt; 2018 Apr; 57(10):2459-2466. PubMed ID: 29714228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highlights on the Road towards Highly Emitting Solid-State Luminophores: Two Classes of Thiazole-Based Organoboron Fluorophores with the AIEE/AIE Effect.
    Lugovik KI; Eltyshev AK; Suntsova PO; Slepukhin PA; Benassi E; Belskaya NP
    Chem Asian J; 2018 Feb; 13(3):311-324. PubMed ID: 29240295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon dots and AIE molecules for highly efficient tandem luminescent solar concentrators.
    Ma W; Li W; Liu R; Cao M; Zhao X; Gong X
    Chem Commun (Camb); 2019 Jul; 55(52):7486-7489. PubMed ID: 31184645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Performance Near-Infrared Luminescent Solar Concentrators.
    Rondão R; Frias AR; Correia SF; Fu L; de Zea Bermudez V; André PS; Ferreira RA; Carlos LD
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12540-12546. PubMed ID: 28317371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency.
    Coropceanu I; Bawendi MG
    Nano Lett; 2014 Jul; 14(7):4097-101. PubMed ID: 24902615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ray-trace simulation of CuInS(Se)₂ quantum dot based luminescent solar concentrators.
    Hu X; Kang R; Zhang Y; Deng L; Zhong H; Zou B; Shi LJ
    Opt Express; 2015 Jul; 23(15):A858-67. PubMed ID: 26367686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-performance laminated luminescent solar concentrators based on colloidal carbon quantum dots.
    Zhao H; Liu G; Han G
    Nanoscale Adv; 2019 Dec; 1(12):4888-4894. PubMed ID: 36133122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterostructured Nanotetrapod Luminophores for Reabsorption Elimination within Luminescent Solar Concentrators.
    Gordon CK; Browne LD; Chan S; Brett MW; Zemke-Smith C; Hardy J; Price MB; Davis NJLK
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17914-17921. PubMed ID: 36975316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Minimizing Scaling Losses in High-Performance Quantum Dot Luminescent Solar Concentrators for Large-Area Solar Windows.
    Makarov NS; Korus D; Freppon D; Ramasamy K; Houck DW; Velarde A; Parameswar A; Bergren MR; McDaniel H
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29679-29689. PubMed ID: 35729115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization and reduction of reabsorption losses in luminescent solar concentrators.
    Wilson LR; Rowan BC; Robertson N; Moudam O; Jones AC; Richards BS
    Appl Opt; 2010 Mar; 49(9):1651-61. PubMed ID: 20300163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visual Appearance of Nanocrystal-Based Luminescent Solar Concentrators.
    Moraitis P; Leeuwen GV; Sark WV
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30884811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Boosting efficiency of luminescent solar concentrators using ultra-bright carbon dots with large Stokes shift.
    Li J; Zhao H; Zhao X; Gong X
    Nanoscale Horiz; 2022 Dec; 8(1):83-94. PubMed ID: 36321503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Red and yellow emissive carbon dots integrated tandem luminescent solar concentrators with significantly improved efficiency.
    Li J; Zhao H; Zhao X; Gong X
    Nanoscale; 2021 Jun; 13(21):9561-9569. PubMed ID: 34008686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photon upconversion-assisted dual-band luminescence solar concentrators coupled with perovskite solar cells for highly efficient semi-transparent photovoltaic systems.
    Kim K; Nam SK; Cho J; Moon JH
    Nanoscale; 2020 Jun; 12(23):12426-12431. PubMed ID: 32494797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mn-Doped Multiple Quantum Well Perovskites for Efficient Large-Area Luminescent Solar Concentrators.
    Wei T; Lian K; Tao J; Zhang H; Xu D; Han J; Fan C; Zhang Z; Bi W; Sun C
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44572-44580. PubMed ID: 36125906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Harnessing the properties of colloidal quantum dots in luminescent solar concentrators.
    Zhou Y; Zhao H; Ma D; Rosei F
    Chem Soc Rev; 2018 Jul; 47(15):5866-5890. PubMed ID: 29915833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving power conversion efficiency in luminescent solar concentrators using nanoparticle fluorescence and scattering.
    Lu Q; Xu S; Shao H; Huang G; Xu J; Cui Y; Ban D; Wang C
    Nanotechnology; 2020 Nov; 31(45):455205. PubMed ID: 32736367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stokes-Shift-Engineered Indium Phosphide Quantum Dots for Efficient Luminescent Solar Concentrators.
    Sadeghi S; Bahmani Jalali H; Melikov R; Ganesh Kumar B; Mohammadi Aria M; Ow-Yang CW; Nizamoglu S
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12975-12982. PubMed ID: 29589740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.