These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24844797)

  • 1. Potential estrogenic effects of phosphorus-containing flame retardants.
    Zhang Q; Lu M; Dong X; Wang C; Zhang C; Liu W; Zhao M
    Environ Sci Technol; 2014 Jun; 48(12):6995-7001. PubMed ID: 24844797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thyroid hormone-disrupting activity and ecological risk assessment of phosphorus-containing flame retardants by in vitro, in vivo and in silico approaches.
    Zhang Q; Ji C; Yin X; Yan L; Lu M; Zhao M
    Environ Pollut; 2016 Mar; 210():27-33. PubMed ID: 26701863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells.
    Huang C; Li N; Yuan S; Ji X; Ma M; Rao K; Wang Z
    Environ Pollut; 2017 Nov; 230():775-786. PubMed ID: 28732339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis.
    van der Veen I; de Boer J
    Chemosphere; 2012 Aug; 88(10):1119-53. PubMed ID: 22537891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors.
    Kojima H; Takeuchi S; Itoh T; Iida M; Kobayashi S; Yoshida T
    Toxicology; 2013 Dec; 314(1):76-83. PubMed ID: 24051214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro estrogen-disrupting effects of organophosphate flame retardants.
    Ji X; Li N; Ma M; Rao K; Wang Z
    Sci Total Environ; 2020 Jul; 727():138484. PubMed ID: 32330712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated assessment of endocrine disrupting potential of four novel brominated flame retardants.
    Zhang Q; Gu S; Yu C; Cao R; Xu Y; Fu L; Wang C
    Ecotoxicol Environ Saf; 2022 Mar; 232():113206. PubMed ID: 35085884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing in-vitro estrogenic effects of currently-used flame retardants.
    Krivoshiev BV; Dardenne F; Covaci A; Blust R; Husson SJ
    Toxicol In Vitro; 2016 Jun; 33():153-62. PubMed ID: 26979758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aryl-phosphorus-containing flame retardants induce oxidative stress, the p53-dependent DNA damage response and mitochondrial impairment in A549 cells.
    Yuan S; Han Y; Ma M; Rao K; Wang Z; Yang R; Liu Y; Zhou X
    Environ Pollut; 2019 Jul; 250():58-67. PubMed ID: 30981936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of polybrominated diphenyl ethers, hexabromocyclododecanes, and legacy and emerging phosphorus flame retardants in human hair.
    Tang B; Xiong SM; Zheng J; Wang MH; Cai FS; Luo WK; Xu RF; Yu YJ
    Chemosphere; 2021 Jan; 262():127807. PubMed ID: 32763577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormonal activities of new brominated flame retardants.
    Ezechiáš M; Svobodová K; Cajthaml T
    Chemosphere; 2012 May; 87(7):820-4. PubMed ID: 22236593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estrogenic and anti-estrogenic activities of hispolon from Phellinus lonicerinus (Bond.) Bond. et sing.
    Wang J; Hu F; Luo Y; Luo H; Huang N; Cheng F; Deng Z; Deng W; Zou K
    Fitoterapia; 2014 Jun; 95():93-101. PubMed ID: 24637110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro oxidative stress, mitochondrial impairment and G1 phase cell cycle arrest induced by alkyl-phosphorus-containing flame retardants.
    Yuan S; Zhu K; Ma M; Zhu X; Rao K; Wang Z
    Chemosphere; 2020 Jun; 248():126026. PubMed ID: 32006839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses.
    Mizouchi S; Ichiba M; Takigami H; Kajiwara N; Takamuku T; Miyajima T; Kodama H; Someya T; Ueno D
    Chemosphere; 2015 Mar; 123():17-25. PubMed ID: 25532762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of estrogen receptor α activities in polychlorinated biphenyls by in vitro dual-luciferase reporter gene assay.
    Zhang Q; Lu M; Wang C; Du J; Zhou P; Zhao M
    Environ Pollut; 2014 Jun; 189():169-75. PubMed ID: 24675366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: composition variations and implications for human exposure.
    Zheng X; Xu F; Chen K; Zeng Y; Luo X; Chen S; Mai B; Covaci A
    Environ Int; 2015 May; 78():1-7. PubMed ID: 25677852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in the seasonal variation of brominated and phosphorus flame retardants in office dust.
    Cao Z; Xu F; Covaci A; Wu M; Yu G; Wang B; Deng S; Huang J
    Environ Int; 2014 Apr; 65():100-6. PubMed ID: 24480750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of organophosphorus flame retardants in sediments from the Pearl River Delta in South China.
    Tan XX; Luo XJ; Zheng XB; Li ZR; Sun RX; Mai BX
    Sci Total Environ; 2016 Feb; 544():77-84. PubMed ID: 26657357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of brominated, chlorinated, and phosphate flame retardants in San Francisco Bay, an urban estuary.
    Sutton R; Chen D; Sun J; Greig DJ; Wu Y
    Sci Total Environ; 2019 Feb; 652():212-223. PubMed ID: 30366322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors.
    Kojima H; Takeuchi S; Van den Eede N; Covaci A
    Toxicol Lett; 2016 Mar; 245():31-9. PubMed ID: 26778350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.