These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 24845425)
1. Acute and chronic response of Daphnia magna exposed to TiO2 nanoparticles in agitation system. Kim KT; Klaine SJ; Kim SD Bull Environ Contam Toxicol; 2014 Oct; 93(4):456-60. PubMed ID: 24845425 [TBL] [Abstract][Full Text] [Related]
2. Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Das P; Xenopoulos MA; Metcalfe CD Bull Environ Contam Toxicol; 2013 Jul; 91(1):76-82. PubMed ID: 23708262 [TBL] [Abstract][Full Text] [Related]
3. Does the exposure mode to ENPs influence their toxicity to aquatic species? A case study with TiO2 nanoparticles and Daphnia magna. Salieri B; Pasteris A; Baumann J; Righi S; Köser J; D'Amato R; Mazzesi B; Filser J Environ Sci Pollut Res Int; 2015 Apr; 22(7):5050-8. PubMed ID: 25567056 [TBL] [Abstract][Full Text] [Related]
4. Effect of chronic toxicity of the crystalline forms of TiO Liu S; Zeng P; Li X; Thuyet DQ; Fan W Ecotoxicol Environ Saf; 2019 Oct; 181():292-300. PubMed ID: 31201961 [TBL] [Abstract][Full Text] [Related]
5. Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka. Ma H; Brennan A; Diamond SA Environ Toxicol Chem; 2012 Jul; 31(7):1621-9. PubMed ID: 22544710 [TBL] [Abstract][Full Text] [Related]
6. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Zhu X; Chang Y; Chen Y Chemosphere; 2010 Jan; 78(3):209-15. PubMed ID: 19963236 [TBL] [Abstract][Full Text] [Related]
7. Protein profiling as early detection biomarkers for TiO Sá-Pereira P; Diniz MS; Moita L; Pinheiro T; Mendonça E; Paixão SM; Picado A Ecotoxicology; 2018 May; 27(4):430-439. PubMed ID: 29572590 [TBL] [Abstract][Full Text] [Related]
8. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Wiench K; Wohlleben W; Hisgen V; Radke K; Salinas E; Zok S; Landsiedel R Chemosphere; 2009 Sep; 76(10):1356-65. PubMed ID: 19580988 [TBL] [Abstract][Full Text] [Related]
9. Two-generational effects and recovery of arsenic and arsenate on Daphnia magna in the presence of nano-TiO Fan W; Liang D; Wang X; Ren J; Xiao S; Zhou T Ecotoxicol Environ Saf; 2019 May; 172():136-143. PubMed ID: 30708224 [TBL] [Abstract][Full Text] [Related]
10. The significance of nanomaterial post-exposure responses in Daphnia magna standard acute immobilisation assay: Example with testing TiO Novak S; Jemec Kokalj A; Hočevar M; Godec M; Drobne D Ecotoxicol Environ Saf; 2018 May; 152():61-66. PubMed ID: 29407783 [TBL] [Abstract][Full Text] [Related]
11. Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight. Mansfield CM; Alloy MM; Hamilton J; Verbeck GF; Newton K; Klaine SJ; Roberts AP Chemosphere; 2015 Feb; 120():206-10. PubMed ID: 25062026 [TBL] [Abstract][Full Text] [Related]
12. Exposure to sublethal concentrations of Co Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688 [TBL] [Abstract][Full Text] [Related]
13. Age and exposure duration as a factor influencing Cu and Zn toxicity toward Daphnia magna. Muyssen BT; Janssen CR Ecotoxicol Environ Saf; 2007 Nov; 68(3):436-42. PubMed ID: 17258805 [TBL] [Abstract][Full Text] [Related]
14. Long-term effects of nanoscaled titanium dioxide on the cladoceran Daphnia magna over six generations. Jacobasch C; Völker C; Giebner S; Völker J; Alsenz H; Potouridis T; Heidenreich H; Kayser G; Oehlmann J; Oetken M Environ Pollut; 2014 Mar; 186():180-6. PubMed ID: 24378815 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Acute and Chronic Toxicity of DBP to Daphnia magna. Wei J; Shen Q; Ban Y; Wang Y; Shen C; Wang T; Zhao W; Xie X Bull Environ Contam Toxicol; 2018 Aug; 101(2):214-221. PubMed ID: 29980811 [TBL] [Abstract][Full Text] [Related]
16. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna. Cupi D; Hartmann NB; Baun A Environ Toxicol Chem; 2015 Mar; 34(3):497-506. PubMed ID: 25546145 [TBL] [Abstract][Full Text] [Related]
17. Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Tan C; Wang WX Environ Pollut; 2014 Mar; 186():36-42. PubMed ID: 24361562 [TBL] [Abstract][Full Text] [Related]
18. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures. Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458 [TBL] [Abstract][Full Text] [Related]
19. Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction. Kim KT; Klaine SJ; Cho J; Kim SH; Kim SD Sci Total Environ; 2010 Apr; 408(10):2268-72. PubMed ID: 20153877 [TBL] [Abstract][Full Text] [Related]
20. Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation. Dalai S; Iswarya V; Bhuvaneshwari M; Pakrashi S; Chandrasekaran N; Mukherjee A Aquat Toxicol; 2014 Jul; 152():139-46. PubMed ID: 24755515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]