BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 24845482)

  • 41. Overcoming drug resistance in chronic myeloid leukemia.
    Cortes J
    Curr Opin Hematol; 2006 Mar; 13(2):79-86. PubMed ID: 16456373
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New tyrosine kinase inhibitors in chronic myeloid leukemia.
    Martinelli G; Soverini S; Rosti G; Cilloni D; Baccarani M
    Haematologica; 2005 Apr; 90(4):534-41. PubMed ID: 15820950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia.
    Barnes DJ; Palaiologou D; Panousopoulou E; Schultheis B; Yong AS; Wong A; Pattacini L; Goldman JM; Melo JV
    Cancer Res; 2005 Oct; 65(19):8912-9. PubMed ID: 16204063
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Targeting peroxisome proliferator-activated receptors: a novel strategy for Philadelphia chromosome-positive leukemia cells.
    Okabe S; Tauchi T; Tanaka Y; Ohyashiki K
    Leuk Lymphoma; 2017 Nov; 58(11):2762-2764. PubMed ID: 28504032
    [No Abstract]   [Full Text] [Related]  

  • 45. Smenospongine, a spongean sesquiterpene aminoquinone, induces erythroid differentiation in K562 cells.
    Aoki S; Kong D; Matsui K; Kobayashi M
    Anticancer Drugs; 2004 Apr; 15(4):363-9. PubMed ID: 15057141
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antibody-based detection of protein phosphorylation status to track the efficacy of novel therapies using nanogram protein quantities from stem cells and cell lines.
    Aspinall-O'Dea M; Pierce A; Pellicano F; Williamson AJ; Scott MT; Walker MJ; Holyoake TL; Whetton AD
    Nat Protoc; 2015 Jan; 10(1):149-68. PubMed ID: 25521791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrasensitive proteomic quantitation of cellular signaling by digitized nanoparticle-protein counting.
    Jacob T; Agarwal A; Ramunno-Johnson D; O'Hare T; Gönen M; Tyner JW; Druker BJ; Vu TQ
    Sci Rep; 2016 Jun; 6():28163. PubMed ID: 27320899
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Clinical relevance of targeted interference with Src-mediated signal transduction events.
    Ly QP; Yeatman TJ
    Recent Results Cancer Res; 2007; 172():169-88. PubMed ID: 17607941
    [No Abstract]   [Full Text] [Related]  

  • 49. Off-target effects of tyrosine kinase inhibitors: Beauty or the Beast?
    Zhang R; Loughran TP
    Leuk Lymphoma; 2011 Apr; 52(4):556-7. PubMed ID: 21438827
    [No Abstract]   [Full Text] [Related]  

  • 50. SRC inhibitors as potential therapeutic agents for human cancers.
    Trevino JG; Summy JM; Gallick GE
    Mini Rev Med Chem; 2006 Jun; 6(6):681-7. PubMed ID: 16787379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selectivity and therapeutic inhibition of kinases: to be or not to be?
    Ghoreschi K; Laurence A; O'Shea JJ
    Nat Immunol; 2009 Apr; 10(4):356-60. PubMed ID: 19295632
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Small-Molecule Inhibition of the UNC-Src Interaction Impairs Dynamic Src Localization in Cells.
    Garivet G; Hofer W; Konitsiotis A; Klein C; Kaiser N; Mejuch T; Fansa E; Alsaabi R; Wittinghofer A; Bastiaens PIH; Waldmann H
    Cell Chem Biol; 2019 Jun; 26(6):842-851.e7. PubMed ID: 30956149
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Tyrosine kinase inhibitors in oncology].
    Zander T; Hallek M
    Internist (Berl); 2011 May; 52(5):595-600. PubMed ID: 21503656
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The potential of Src inhibitors.
    Elias D; Ditzel HJ
    Aging (Albany NY); 2015 Oct; 7(10):734-5. PubMed ID: 26454527
    [No Abstract]   [Full Text] [Related]  

  • 55. BiTtEn by Src inhibitors.
    Rousselot P
    Blood; 2021 Feb; 137(7):867-868. PubMed ID: 33599758
    [No Abstract]   [Full Text] [Related]  

  • 56. Better to Be an Agnostic than a Believer (at Least in Pulmonary Fibrosis).
    Sgalla G; Richeldi L
    Am J Respir Crit Care Med; 2022 Dec; 206(12):1439-1440. PubMed ID: 36018567
    [No Abstract]   [Full Text] [Related]  

  • 57. Flow cytometric monitoring of the in vitro inhibition of the phosphorylation of CRKL and of SRC family kinases in patients with chronic myelogenous leukemia treated with tyrosine kinase inhibitors.
    Krupkova L; Mojzikova R; Novotny J; Gazdova J; Divoka M; Skoumalova I; Rohon P; Jarosova M; Indrak K; Faber E; Divoky V
    Int J Lab Hematol; 2015 Feb; 37(1):e11-5. PubMed ID: 24845482
    [No Abstract]   [Full Text] [Related]  

  • 58. Apoptosis in chronic myeloid leukemia cells transiently treated with imatinib or dasatinib is caused by residual BCR-ABL kinase inhibition.
    Simara P; Stejskal S; Koutna I; Potesil D; Tesarova L; Potesilova M; Zdrahal Z; Mayer J
    Am J Hematol; 2013 May; 88(5):385-93. PubMed ID: 23420553
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Clinical significance of CRKL protein phosphorylation level in the treatment of chronic myeloid leukemia with imatinib].
    Xu N; Ouyang Z; DU QF; Wang S; Yang J; Wang Y; Liu XL
    Zhonghua Xue Ye Xue Za Zhi; 2011 Jan; 32(1):25-8. PubMed ID: 21429397
    [TBL] [Abstract][Full Text] [Related]  

  • 60. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice.
    Golas JM; Arndt K; Etienne C; Lucas J; Nardin D; Gibbons J; Frost P; Ye F; Boschelli DH; Boschelli F
    Cancer Res; 2003 Jan; 63(2):375-81. PubMed ID: 12543790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.