BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 2484549)

  • 1. Specific role of manganese and magnesium on RNA synthesis in rabbit bone marrow erythroid cell nuclei.
    Song MK; Hunt JA
    Biol Trace Elem Res; 1988 Aug; 16(3):203-19. PubMed ID: 2484549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of RNA chain elongation complexes formed with RNA polymerase and denatured DNA templates.
    Misumi H
    Acta Med Okayama; 1989 Dec; 43(6):323-8. PubMed ID: 2483021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in RNA synthesis of endogenous "free" and template-engaged RNA polymerases in isolated nuclei of highly synchronized coleopteran embryos.
    Büning J
    Dev Biol; 1978 May; 64(1):130-9. PubMed ID: 658591
    [No Abstract]   [Full Text] [Related]  

  • 4. Transcription of isolated nuclei and nucleoli by exogenous RNA polymerase A and B.
    Beebee TJ; Butterworth PH
    Eur J Biochem; 1975 Feb; 51(2):537-45. PubMed ID: 1149740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription of yeast DNA by homologous RNA polymerases I and II: selective transcription of ribosomal genes by RNA polymerase I.
    Holland MJ; Hager GL; Rutter WJ
    Biochemistry; 1977 Jan; 16(1):16-24. PubMed ID: 318852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription of heat shock loci of Drosophila in a nuclear system.
    Miller DW; Elgin SC
    Biochemistry; 1981 Aug; 20(17):5033-42. PubMed ID: 6794604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of ribonucleic acid polymerase activity in vitro by prostatic steroid-protein receptor complexes.
    Davies P; Griffiths K
    Biochem J; 1973 Nov; 136(3):611-22. PubMed ID: 4360714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Daunorubicin inhibition of DNA-dependent RNA polymerases from Ehrlich ascites tumor cells.
    Barthelemy-Clavey V; Molinier C; Aubel-Sadron G; Maral R
    Eur J Biochem; 1976 Oct; 69(1):23-33. PubMed ID: 991857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-dependent alterations of the rate of RNA synthesis in rat brain cell nuclei.
    Szeszák F; Corradetti E; Nagy IZ
    Aktuelle Gerontol; 1977 May; 7(5):231-7. PubMed ID: 18035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial purification and characterization of DNA-dependent RNA polymerases I and II from cherry salmon (Oncorhynchus masou).
    Nakayama C; Saneyoshi M; Takiya S; Iwabuchi M
    Comp Biochem Physiol B; 1983; 74(4):719-23. PubMed ID: 6861471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-Amanitin-sensitive DNA-dependent RNA polymerase I from cherry salmon (Oncorhynchus masou) liver nuclei.
    Nakayama C; Saneyoshi M; Takiya S; Iwabuchi M
    Biochem Biophys Res Commun; 1982 Jun; 106(4):1463-8. PubMed ID: 7115413
    [No Abstract]   [Full Text] [Related]  

  • 12. A comparative study of DNA-dependent RNA polymerases from rat ascites hepatoma cell nuclei and from rat liver nuclei.
    Misumi H
    Acta Med Okayama; 1975 Dec; 29(6):405-12. PubMed ID: 180754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of hepatic deoxyribonucleic acid-dependent ribonucleic acid polymerases by the exotoxin of Bacillus thuringiensis in comparison with the effects of -amanitin and cordycepin.
    Smuckler EA; Hadjiolov AA
    Biochem J; 1972 Aug; 129(1):153-66. PubMed ID: 4539593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a soluble simian-virus-40 transcription complex.
    Gariglio P; Mousset S
    Eur J Biochem; 1977 Jun; 76(2):583-90. PubMed ID: 196851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential stimulation by aurintricarboxylic acid of DNA-dependent RNA polymerase II activity in isolated larval nuclei of Artemia salina.
    Swennen L; Moens L; Heip J; Kondo M
    Hoppe Seylers Z Physiol Chem; 1981 Feb; 362(2):133-42. PubMed ID: 6163690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of RNA polymerase activities in nuclei isolated from slow and fast skeletal muscles.
    Held IR
    Exp Cell Res; 1977 Sep; 108(2):432-5. PubMed ID: 891649
    [No Abstract]   [Full Text] [Related]  

  • 17. Evidence for the existence of two forms of RNA polymerases I and II in insect wing epidermis.
    Nowock J; Sridhara S; Gilbert LI
    Biochim Biophys Acta; 1978 Sep; 520(2):393-403. PubMed ID: 708742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function, structure, and regulation of eukaryotic nuclear RNA polymerases.
    Roeder RG; Schwartz LB; Sklar VE
    Symp Soc Dev Biol; 1976; (34):29-52. PubMed ID: 798342
    [No Abstract]   [Full Text] [Related]  

  • 19. High concentration of RNA polymerase I is responsible for the high rate of nucleolar transcription.
    Yu FL
    Biochem J; 1980 May; 188(2):381-5. PubMed ID: 6156675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early events in lymphocyte transformation by phytohemagglutinin. I. DNA-dependent RNA polymerase activities in isolated lymphocyte nuclei.
    Pogo BG
    J Cell Biol; 1972 Jun; 53(3):635-41. PubMed ID: 5028256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.