BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 24845560)

  • 1. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.
    Hawkings JR; Wadham JL; Tranter M; Raiswell R; Benning LG; Statham PJ; Tedstone A; Nienow P; Lee K; Telling J
    Nat Commun; 2014 May; 5():3929. PubMed ID: 24845560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced trace element mobilization by Earth's ice sheets.
    Hawkings JR; Skidmore ML; Wadham JL; Priscu JC; Morton PL; Hatton JE; Gardner CB; Kohler TJ; Stibal M; Bagshaw EA; Steigmeyer A; Barker J; Dore JE; Lyons WB; Tranter M; Spencer RGM;
    Proc Natl Acad Sci U S A; 2020 Dec; 117(50):31648-31659. PubMed ID: 33229559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export.
    Hopwood MJ; Carroll D; Höfer J; Achterberg EP; Meire L; Le Moigne FAC; Bach LT; Eich C; Sutherland DA; González HE
    Nat Commun; 2019 Nov; 10(1):5261. PubMed ID: 31748607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.
    Garabato AC; Forryan A; Dutrieux P; Brannigan L; Biddle LC; Heywood KJ; Jenkins A; Firing YL; Kimura S
    Nature; 2017 Feb; 542(7640):219-222. PubMed ID: 28135723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt.
    Raiswell R; Benning LG; Tranter M; Tulaczyk S
    Geochem Trans; 2008 May; 9():7. PubMed ID: 18513396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in future climate due to Antarctic meltwater.
    Bronselaer B; Winton M; Griffies SM; Hurlin WJ; Rodgers KB; Sergienko OV; Stouffer RJ; Russell JL
    Nature; 2018 Dec; 564(7734):53-58. PubMed ID: 30455421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recharge of a subglacial lake by surface meltwater in northeast Greenland.
    Willis MJ; Herried BG; Bevis MG; Bell RE
    Nature; 2015 Feb; 518(7538):223-7. PubMed ID: 25607355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass balance of the Greenland Ice Sheet from 1992 to 2018.
    IMBIE Team
    Nature; 2020 Mar; 579(7798):233-239. PubMed ID: 31822019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous summer export of nitrogen-rich organic matter from the Greenland Ice Sheet inferred by ultrahigh resolution mass spectrometry.
    Lawson EC; Bhatia MP; Wadham JL; Kujawinski EB
    Environ Sci Technol; 2014 Dec; 48(24):14248-57. PubMed ID: 25375225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice-sheet response to oceanic forcing.
    Joughin I; Alley RB; Holland DM
    Science; 2012 Nov; 338(6111):1172-6. PubMed ID: 23197526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reconciled estimate of ice-sheet mass balance.
    Shepherd A; Ivins ER; A G; Barletta VR; Bentley MJ; Bettadpur S; Briggs KH; Bromwich DH; Forsberg R; Galin N; Horwath M; Jacobs S; Joughin I; King MA; Lenaerts JT; Li J; Ligtenberg SR; Luckman A; Luthcke SB; McMillan M; Meister R; Milne G; Mouginot J; Muir A; Nicolas JP; Paden J; Payne AJ; Pritchard H; Rignot E; Rott H; Sørensen LS; Scambos TA; Scheuchl B; Schrama EJ; Smith B; Sundal AV; van Angelen JH; van de Berg WJ; van den Broeke MR; Vaughan DG; Velicogna I; Wahr J; Whitehouse PL; Wingham DJ; Yi D; Young D; Zwally HJ
    Science; 2012 Nov; 338(6111):1183-9. PubMed ID: 23197528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similar meltwater contributions to glacial sea level changes from Antarctic and northern ice sheets.
    Rohling EJ; Marsh R; Wells NC; Siddall M; Edwards NR
    Nature; 2004 Aug; 430(7003):1016-21. PubMed ID: 15329718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sea-ice transport driving Southern Ocean salinity and its recent trends.
    Haumann FA; Gruber N; Münnich M; Frenger I; Kern S
    Nature; 2016 Sep; 537(7618):89-92. PubMed ID: 27582222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The iron records and its sources during 1990-2017 from the Lambert Glacial Basin shallow ice core, East Antarctica.
    Du Z; Xiao C; Mayewski PA; Handley MJ; Li C; Ding M; Liu J; Yang J; Liu K
    Chemosphere; 2020 Jul; 251():126399. PubMed ID: 32163783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greenland ice sheet motion insensitive to exceptional meltwater forcing.
    Tedstone AJ; Nienow PW; Sole AJ; Mair DW; Cowton TR; Bartholomew ID; King MA
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19719-24. PubMed ID: 24248343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron.
    Markussen TN; Elberling B; Winter C; Andersen TJ
    Sci Rep; 2016 Apr; 6():24033. PubMed ID: 27050673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods.
    Shoenfelt EM; Winckler G; Lamy F; Anderson RF; Bostick BC
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11180-11185. PubMed ID: 30322933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes.
    Young DA; Wright AP; Roberts JL; Warner RC; Young NW; Greenbaum JS; Schroeder DM; Holt JW; Sugden DE; Blankenship DD; van Ommen TD; Siegert MJ
    Nature; 2011 Jun; 474(7349):72-5. PubMed ID: 21637255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ice sheets and nitrogen.
    Wolff EW
    Philos Trans R Soc Lond B Biol Sci; 2013 Jul; 368(1621):20130127. PubMed ID: 23713125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initiation and long-term instability of the East Antarctic Ice Sheet.
    Gulick SPS; Shevenell AE; Montelli A; Fernandez R; Smith C; Warny S; Bohaty SM; Sjunneskog C; Leventer A; Frederick B; Blankenship DD
    Nature; 2017 Dec; 552(7684):225-229. PubMed ID: 29239353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.