These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24845745)

  • 1. Haptic simulation of organ deformation and hybrid contacts in dental operations.
    Wang D; Shi Y; Liu S; Zhang Y; Xiao J
    IEEE Trans Haptics; 2014 Mar; 7(1):48-60. PubMed ID: 24845745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation.
    Dangxiao Wang ; Xin Zhang ; Yuru Zhang ; Jing Xiao
    IEEE Trans Haptics; 2013; 6(2):167-80. PubMed ID: 24808301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Six Degree-of-Freedom Haptic Simulation of Probing Dental Caries Within a Narrow Oral Cavity.
    Wang D; Zhao X; Shi Y; Zhang Y; Hou J; Xiao J
    IEEE Trans Haptics; 2016; 9(2):279-91. PubMed ID: 26915130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six Degree-of-Freedom Haptic Simulation of a Stringed Musical Instrument for Triggering Sounds.
    Dangxiao Wang ; Xiaohan Zhao ; Youjiao Shi ; Yuru Zhang ; Jing Xiao
    IEEE Trans Haptics; 2017; 10(2):265-275. PubMed ID: 28113956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating sharp geometric features in six degrees-of-freedom haptic rendering.
    Yu G; Wang D; Zhang Y; Xiao J
    IEEE Trans Haptics; 2015; 8(1):67-78. PubMed ID: 25532133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Six-DoF Haptic Rendering of Contact Between Geometrically Complex Reduced Deformable Models.
    Barbic J; James DL
    IEEE Trans Haptics; 2008; 1(1):39-52. PubMed ID: 27780152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Configuration-based Optimization for Virtual Hand Haptic Simulation.
    Tong Q; Wang Q; Zhang Y; Liao X; Wei W; Zhang Y; Xiao J; Wang D
    IEEE Trans Haptics; 2022 Aug; PP():. PubMed ID: 35925846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3-RSR Haptic Wearable Device for Rendering Fingertip Contact Forces.
    Leonardis D; Solazzi M; Bortone I; Frisoli A
    IEEE Trans Haptics; 2017; 10(3):305-316. PubMed ID: 28113306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iDental: A Haptic-Based Dental Simulator and Its Preliminary User Evaluation.
    Dangxiao Wang ; Yuru Zhang ; Jianxia Hou ; Yong Wang ; Peijun Lv ; Yonggang Chen ; Hui Zhao
    IEEE Trans Haptics; 2012; 5(4):332-43. PubMed ID: 26964131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive 6-DoF Haptic Contact Stiffness Using the Gauss Map.
    Xu H; Barbic J
    IEEE Trans Haptics; 2016; 9(3):323-332. PubMed ID: 28113563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Collision Detection for Virtual Proxy Haptic Rendering of Deformable Triangular Mesh Models.
    Ding H; Mitake H; Hasegawa S
    IEEE Trans Haptics; 2019; 12(4):624-634. PubMed ID: 31425052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realistic haptic rendering of interacting deformable objects in virtual environments.
    Duriez C; Dubois F; Kheddar A; Andriot C
    IEEE Trans Vis Comput Graph; 2006; 12(1):36-47. PubMed ID: 16382606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haptic Rendering of Diverse Tool-Tissue Contact Constraints During Dental Implantation Procedures.
    Zhao X; Zhu Z; Cong Y; Zhao Y; Zhang Y; Wang D
    Front Robot AI; 2020; 7():35. PubMed ID: 33501203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed haptic interactions with physically based 3D deformable models over lossy networks.
    Tang Z; Yang Y; Guo X; Prabhakaran B
    IEEE Trans Haptics; 2013; 6(4):417-28. PubMed ID: 24808394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation Matching: Force Computation Based on Deformation Optimization.
    Hirota K; Ujitoko Y; Sakurai S; Nojima T
    IEEE Trans Haptics; 2022; 15(2):267-279. PubMed ID: 35130170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory Substitution and Augmentation Using 3-Degree-of-Freedom Skin Deformation Feedback.
    Quek ZF; Schorr SB; Nisky I; Provancher WR; Okamura AM
    IEEE Trans Haptics; 2015; 8(2):209-21. PubMed ID: 25647582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method of synchronization for haptic collaborative virtual environments in multipoint and multi-level computer performance systems.
    Tagawa K; Bito T; Tanaka HT
    Stud Health Technol Inform; 2011; 163():638-44. PubMed ID: 21335871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties.
    Ortega M; Redon S; Coquillart S
    IEEE Trans Vis Comput Graph; 2007; 13(3):458-69. PubMed ID: 17356213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Transparency of Client/Server-Based Haptic Interaction with Deformable Objects.
    Schuwerk C; Xu X; Steinbach E
    IEEE Trans Haptics; 2017; 10(2):240-253. PubMed ID: 28113990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.