These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 24845805)
1. Bioaccumulation of highly hydrophobic organohalogen flame retardants from sediments: application of toxicokinetics and passive sampling techniques. Li H; Zhang B; Wei Y; Wang F; Lydy MJ; You J Environ Sci Technol; 2014 Jun; 48(12):6957-64. PubMed ID: 24845805 [TBL] [Abstract][Full Text] [Related]
2. Bioaccumulation kinetics of polybrominated diphenyl ethers and decabromodiphenyl ethane from field-collected sediment in the oligochaete, Lumbriculus variegatus. Zhang B; Li H; Wei Y; You J Environ Toxicol Chem; 2013 Dec; 32(12):2711-8. PubMed ID: 24038512 [TBL] [Abstract][Full Text] [Related]
3. Bioavailability of polybrominated diphenyl ether flame retardants in biosolids and spiked sediment to the aquatic oligochaete, Lumbriculus variegatus. Ciparis S; Hale RC Environ Toxicol Chem; 2005 Apr; 24(4):916-25. PubMed ID: 15839567 [TBL] [Abstract][Full Text] [Related]
4. A passive sampler based on solid phase microextraction (SPME) for sediment-associated organic pollutants: Comparing freely-dissolved concentration with bioaccumulation. Maruya KA; Lao W; Tsukada D; Diehl DW Chemosphere; 2015 Oct; 137():192-7. PubMed ID: 26246043 [TBL] [Abstract][Full Text] [Related]
5. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments. Tuikka AI; Leppänen MT; Akkanen J; Sormunen AJ; Leonards PE; van Hattum B; van Vliet LA; Brack W; Smedes F; Kukkonen JV Sci Total Environ; 2016 Sep; 563-564():396-404. PubMed ID: 27139309 [TBL] [Abstract][Full Text] [Related]
6. Bioavailability of PCBs from field-collected sediments: application of Tenax extraction and matrix-SPME techniques. Trimble TA; You J; Lydy MJ Chemosphere; 2008 Mar; 71(2):337-44. PubMed ID: 17942136 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability of decabromodiphenyl ether to the marine polychaete Nereis virens. Klosterhaus SL; Baker JE Environ Toxicol Chem; 2010 Apr; 29(4):860-8. PubMed ID: 20821515 [TBL] [Abstract][Full Text] [Related]
8. Biota-sediment accumulation factors for Dechlorane Plus in bottom fish from an electronic waste recycling site, South China. Zhang Y; Wu JP; Luo XJ; Sun YX; Mo L; Chen SJ; Mai BX Environ Int; 2011 Nov; 37(8):1357-61. PubMed ID: 21705082 [TBL] [Abstract][Full Text] [Related]
9. Bioavailability of hydrophobic organic contaminants in sediment with different particle-size distributions. Mehler WT; Li H; Pang J; Sun B; Lydy MJ; You J Arch Environ Contam Toxicol; 2011 Jul; 61(1):74-82. PubMed ID: 20953950 [TBL] [Abstract][Full Text] [Related]
10. Desorption and bioavailability of spiked pentabromo diphenyl ether and tetrachlorodibenzo(p)dioxin in contaminated sediments. Sormunen AJ; Leppänen MT; Kukkonen JV Arch Environ Contam Toxicol; 2009 May; 56(4):670-9. PubMed ID: 18779939 [TBL] [Abstract][Full Text] [Related]
12. Bioaccumulation kinetics of polybrominated diphenyl ethers from estuarine sediments to the marine polychaete, Nereis virens. Klosterhaus SL; Dreis E; Baker JE Environ Toxicol Chem; 2011 May; 30(5):1204-12. PubMed ID: 21337608 [TBL] [Abstract][Full Text] [Related]
13. Benthic bioaccumulation and bioavailability of polybrominated diphenyl ethers from surficial Lake Ontario sediments near Rochester, New York, USA. Lotufo GR; Pickard SW Bull Environ Contam Toxicol; 2010 Sep; 85(3):348-51. PubMed ID: 20658224 [TBL] [Abstract][Full Text] [Related]
14. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China. Shi T; Chen SJ; Luo XJ; Zhang XL; Tang CM; Luo Y; Ma YJ; Wu JP; Peng XZ; Mai BX Chemosphere; 2009 Feb; 74(7):910-6. PubMed ID: 19059630 [TBL] [Abstract][Full Text] [Related]
15. Halogenated flame retardants during egg formation and chicken embryo development: maternal transfer, possible biotransformation, and tissue distribution. Zheng XB; Luo XJ; Zeng YH; Wu JP; Chen SJ; Mai BX Environ Toxicol Chem; 2014 Aug; 33(8):1712-9. PubMed ID: 24888473 [TBL] [Abstract][Full Text] [Related]
16. A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment pore water. Maruya KA; Zeng EY; Tsukada D; Bay SM Environ Toxicol Chem; 2009 Apr; 28(4):733-40. PubMed ID: 19391690 [TBL] [Abstract][Full Text] [Related]
17. Assessing bioaccessibility and bioavailability of chlorinated organophosphorus flame retardants in sediments. He H; Gao Z; Zhu D; Guo J; Yang S; Li S; Zhang L; Sun C Chemosphere; 2017 Dec; 189():239-246. PubMed ID: 28942249 [TBL] [Abstract][Full Text] [Related]
18. Solid-phase microextraction (SPME) with stable isotope calibration for measuring bioavailability of hydrophobic organic contaminants. Cui X; Bao L; Gan J Environ Sci Technol; 2013 Sep; 47(17):9833-40. PubMed ID: 23930601 [TBL] [Abstract][Full Text] [Related]
19. Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. You J; Landrum PF; Lydy MJ Environ Sci Technol; 2006 Oct; 40(20):6348-53. PubMed ID: 17120564 [TBL] [Abstract][Full Text] [Related]
20. Occurrence of classic and emerging halogenated flame retardants in sediment and sludge from Ebro and Llobregat river basins (Spain). Barón E; Santín G; Eljarrat E; Barceló D J Hazard Mater; 2014 Jan; 265():288-95. PubMed ID: 24295901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]