These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 24845820)
1. Label-free detection of adenosine based on fluorescence resonance energy transfer between fluorescent silica nanoparticles and unmodified gold nanoparticles. Qiang W; Liu H; Li W; Chen X; Xu D Anal Chim Acta; 2014 May; 828():92-8. PubMed ID: 24845820 [TBL] [Abstract][Full Text] [Related]
2. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles. Gao F; Cui P; Chen X; Ye Q; Li M; Wang L Analyst; 2011 Oct; 136(19):3973-80. PubMed ID: 21845282 [TBL] [Abstract][Full Text] [Related]
3. A sensitive strategy for label-free and time-resolved fluorescence assay of thrombin using Tb-complex and unmodified gold nanoparticles. Huang D; Niu C; Li Z; Ruan M; Wang X; Zeng G Analyst; 2012 Dec; 137(23):5607-13. PubMed ID: 23074705 [TBL] [Abstract][Full Text] [Related]
4. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine. Gao F; Ye Q; Cui P; Zhang L J Agric Food Chem; 2012 May; 60(18):4550-8. PubMed ID: 22443279 [TBL] [Abstract][Full Text] [Related]
6. Split aptamer based sensing platform for adenosine deaminase detection by fluorescence resonance energy transfer. Wang M; Chen J; Su D; Wang G; Su X Talanta; 2019 Jun; 198():1-7. PubMed ID: 30876536 [TBL] [Abstract][Full Text] [Related]
7. Determination of adenosine triphosphate based on the use of fluorescent terbium(III) organic frameworks and aptamer modified gold nanoparticles. Sun C; Zhao S; Qu F; Han W; You J Mikrochim Acta; 2019 Dec; 187(1):34. PubMed ID: 31814046 [TBL] [Abstract][Full Text] [Related]
8. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Qu F; Sun C; Lv X; You J Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289 [TBL] [Abstract][Full Text] [Related]
9. A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer. Yu Y; Cao Q; Zhou M; Cui H Biosens Bioelectron; 2013 May; 43():137-42. PubMed ID: 23298624 [TBL] [Abstract][Full Text] [Related]
10. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity. Hung SY; Shih YC; Tseng WL Anal Chim Acta; 2015 Feb; 857():64-70. PubMed ID: 25604821 [TBL] [Abstract][Full Text] [Related]
11. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Shi Y; Pan Y; Zhang H; Zhang Z; Li MJ; Yi C; Yang M Biosens Bioelectron; 2014 Jun; 56():39-45. PubMed ID: 24462829 [TBL] [Abstract][Full Text] [Related]
12. Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer. Zhu X; Zhang Y; Yang W; Liu Q; Lin Z; Qiu B; Chen G Anal Chim Acta; 2011 Jan; 684(1-2):121-5. PubMed ID: 21167993 [TBL] [Abstract][Full Text] [Related]
13. An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles. Chen J; Li Z; Ge J; Yang R; Zhang L; Qu LB; Wang HQ; Zhang L Talanta; 2015 Jul; 139():226-32. PubMed ID: 25882430 [TBL] [Abstract][Full Text] [Related]
14. Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctional aptamer and chemiluminescent functionalized gold nanoparticles. Chai Y; Tian D; Cui H Anal Chim Acta; 2012 Feb; 715():86-92. PubMed ID: 22244171 [TBL] [Abstract][Full Text] [Related]
15. Enrichment and fluorescence enhancement of adenosine using aptamer-gold nanoparticles, PDGF aptamer, and Oligreen. Chen SJ; Huang CC; Chang HT Talanta; 2010 Apr; 81(1-2):493-8. PubMed ID: 20188952 [TBL] [Abstract][Full Text] [Related]
16. Fluorescent aptasensor for 17β-estradiol determination based on gold nanoparticles quenching the fluorescence of Rhodamine B. Ni X; Xia B; Wang L; Ye J; Du G; Feng H; Zhou X; Zhang T; Wang W Anal Biochem; 2017 Apr; 523():17-23. PubMed ID: 28137603 [TBL] [Abstract][Full Text] [Related]
17. A sensitive, label-free, aptamer-based biosensor using a gold nanoparticle-initiated chemiluminescence system. Qi Y; Li B Chemistry; 2011 Feb; 17(5):1642-8. PubMed ID: 21268167 [TBL] [Abstract][Full Text] [Related]
18. Label free and homogeneous histone sensing based on chemiluminescence resonance energy transfer between lucigenin and gold nanoparticles. He Y; Cui H Biosens Bioelectron; 2013 Sep; 47():313-7. PubMed ID: 23603126 [TBL] [Abstract][Full Text] [Related]
19. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb²⁺ and Hg²⁺. Wu S; Duan N; Shi Z; Fang C; Wang Z Talanta; 2014 Oct; 128():327-36. PubMed ID: 25059168 [TBL] [Abstract][Full Text] [Related]
20. A sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules. Qin G; Zhao S; Huang Y; Jiang J; Liu YM Biosens Bioelectron; 2013 Aug; 46():119-23. PubMed ID: 23524140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]