BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24845868)

  • 1. Improving the estimate of the effective elastic modulus derived from three-point bending tests of long bones.
    Kourtis LC; Carter DR; Beaupre GS
    Ann Biomed Eng; 2014 Aug; 42(8):1773-80. PubMed ID: 24845868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus.
    van Lenthe GH; Voide R; Boyd SK; Müller R
    Bone; 2008 Oct; 43(4):717-23. PubMed ID: 18639658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: a new approach for characterizing small-bone material properties.
    Chattah NL; Sharir A; Weiner S; Shahar R
    Bone; 2009 Jul; 45(1):84-90. PubMed ID: 19332167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of mechanical properties derived from multiple skeletal sites in mice.
    Schriefer JL; Robling AG; Warden SJ; Fournier AJ; Mason JJ; Turner CH
    J Biomech; 2005 Mar; 38(3):467-75. PubMed ID: 15652544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic modulus varies along the bovine femur.
    Nobakhti S; Katsamenis OL; Zaarour N; Limbert G; Thurner PJ
    J Mech Behav Biomed Mater; 2017 Jul; 71():279-285. PubMed ID: 28371701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of beam theory for estimating bone tissue modulus and yield stress from 3-point bending tests on rat femora.
    Arias-Moreno AJ; Ito K; van Rietbergen B
    J Biomech; 2020 Mar; 101():109654. PubMed ID: 32007225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the Effects of Formalin Fixation on the Mechanical Properties of Cortical Bone Using Beam Theory and Optimization Methodology With Specimen-Specific Finite Element Models.
    Zhang GJ; Yang J; Guan FJ; Chen D; Li N; Cao L; Mao H
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27447849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of Elastic Modulus in Mouse Bones Using a Nondestructive Micro-Indentation Technique Using Reference Point Indentation.
    Thiagarajan G; Begonia MT; Dallas M; Lara-Castillo N; Scott JM; Johnson ML
    J Biomech Eng; 2018 Jul; 140(7):0710111-07101111. PubMed ID: 29801077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique.
    Soons JA; Aernouts J; Dirckx JJ
    Hear Res; 2010 May; 263(1-2):33-7. PubMed ID: 19818840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensively characterizing heterogeneous and transversely isotropic properties of femur cortical bones.
    Zhang G; Jia X; Li Z; Wang Q; Gu H; Liu Y; Bai Z; Mao H
    J Mech Behav Biomed Mater; 2024 Mar; 151():106387. PubMed ID: 38246092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6.
    Silva MJ; Brodt MD; Fan Z; Rho JY
    J Biomech; 2004 Nov; 37(11):1639-46. PubMed ID: 15388305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone.
    Mente PL; Lewis JL
    J Orthop Res; 1994 Sep; 12(5):637-47. PubMed ID: 7931780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.
    Cheal EJ; Spector M; Hayes WC
    J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The deer femur--a morphological and biomechanical animal model of the human femur.
    Kieser DC; Kanade S; Waddell NJ; Kieser JA; Theis JC; Swain MV
    Biomed Mater Eng; 2014; 24(4):1693-703. PubMed ID: 24948453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimizing specimen length in elastic testing of end-constrained cancellous bone.
    Lievers WB; Waldman SD; Pilkey AK
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):22-30. PubMed ID: 19878899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam-shell finite element models.
    Vanderoost J; Jaecques SV; Van der Perre G; Boonen S; D'hooge J; Lauriks W; van Lenthe GH
    J Biomech; 2011 May; 44(8):1566-72. PubMed ID: 21414627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new device and method for measuring the elastic modulus of single trabeculae.
    Lorenzetti S; Carretta R; Müller R; Stüssi E
    Med Eng Phys; 2011 Oct; 33(8):993-1000. PubMed ID: 21531605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apparent Young's modulus of human radius using inverse finite-element method.
    Bosisio MR; Talmant M; Skalli W; Laugier P; Mitton D
    J Biomech; 2007; 40(9):2022-8. PubMed ID: 17097663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a customized density-modulus relationship for use in subject-specific finite element models of the ulna.
    Austman RL; Milner JS; Holdsworth DW; Dunning CE
    Proc Inst Mech Eng H; 2009 Aug; 223(6):787-94. PubMed ID: 19743644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.