BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24845914)

  • 1. The influence of cell-matrix attachment and matrix development on the micromechanical environment of the chondrocyte in tissue-engineered cartilage.
    Khoshgoftar M; Ito K; van Donkelaar CC
    Tissue Eng Part A; 2014 Dec; 20(23-24):3112-21. PubMed ID: 24845914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of matrix inhomogeneities on the cellular mechanical environment in tissue-engineered cartilage: an in silico investigation.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Tissue Eng Part C Methods; 2014 Feb; 20(2):104-15. PubMed ID: 23679046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of tissue- and cell-scale extracellular matrix distribution on the mechanical properties of tissue-engineered cartilage.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2013 Oct; 12(5):901-13. PubMed ID: 23160844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite element model of cell-matrix interactions to study the differential effect of scaffold composition on chondrogenic response to mechanical stimulation.
    Appelman TP; Mizrahi J; Seliktar D
    J Biomech Eng; 2011 Apr; 133(4):041010. PubMed ID: 21428684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of matrix tension-compression nonlinearity and fixed negative charges on chondrocyte responses in cartilage.
    Likhitpanichkul M; Guo XE; Mow VC
    Mol Cell Biomech; 2005 Dec; 2(4):191-204. PubMed ID: 16705865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage.
    Alexopoulos LG; Setton LA; Guilak F
    Acta Biomater; 2005 May; 1(3):317-25. PubMed ID: 16701810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondrons and the pericellular matrix of chondrocytes.
    Zhang Z
    Tissue Eng Part B Rev; 2015 Jun; 21(3):267-77. PubMed ID: 25366980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage.
    Guilak F
    Biorheology; 2000; 37(1-2):27-44. PubMed ID: 10912176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The deformation behavior and mechanical properties of chondrocytes in articular cartilage.
    Guilak F; Jones WR; Ting-Beall HP; Lee GM
    Osteoarthritis Cartilage; 1999 Jan; 7(1):59-70. PubMed ID: 10367015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization.
    Guilak F; Alexopoulos LG; Haider MA; Ting-Beall HP; Setton LA
    Ann Biomed Eng; 2005 Oct; 33(10):1312-8. PubMed ID: 16240080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of pericellular matrix in development of a mechanically functional neocartilage.
    Graff RD; Kelley SS; Lee GM
    Biotechnol Bioeng; 2003 May; 82(4):457-64. PubMed ID: 12632402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.
    Guilak F; Mow VC
    J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic resonance is a method to improve the biosynthetic response of chondrocytes to mechanical stimulation.
    Weber JF; Waldman SD
    J Orthop Res; 2016 Feb; 34(2):231-9. PubMed ID: 26234431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the temporal deposition of extracellular matrix on the mechanical properties of tissue-engineered cartilage.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Tissue Eng Part A; 2014 May; 20(9-10):1476-85. PubMed ID: 24377881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducing the Biomechanical Environment of the Chondrocyte for Cartilage Tissue Engineering.
    Statham P; Jones E; Jennings LM; Fermor HL
    Tissue Eng Part B Rev; 2022 Apr; 28(2):405-420. PubMed ID: 33726527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive characterization of chondrocyte cultures in plasma and whole blood biomatrices for cartilage tissue engineering.
    Schulz RM; Haberhauer M; Zernia G; Pösel C; Thümmler C; Somerson JS; Huster D
    J Tissue Eng Regen Med; 2014 Jul; 8(7):566-77. PubMed ID: 22761174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics.
    Khoshgoftar M; Torzilli PA; Maher SA
    J Orthop Res; 2018 Feb; 36(2):721-729. PubMed ID: 29044742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.