BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24845975)

  • 1. Modulating materials by orthogonally oriented β-strands: composites of amyloid and silk fibroin fibrils.
    Ling S; Li C; Adamcik J; Shao Z; Chen X; Mezzenga R
    Adv Mater; 2014 Jul; 26(26):4569-74. PubMed ID: 24845975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New process to form a silk fibroin porous 3-D structure.
    Tamada Y
    Biomacromolecules; 2005; 6(6):3100-6. PubMed ID: 16283733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal behavior in the mesoscale properties of amyloid fibrils.
    Assenza S; Adamcik J; Mezzenga R; De Los Rios P
    Phys Rev Lett; 2014 Dec; 113(26):268103. PubMed ID: 25615390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation across the length-scales in beta-lactoglobulin.
    Bromley EH; Krebs MR; Donald AM
    Faraday Discuss; 2005; 128():13-27. PubMed ID: 15658764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
    Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL
    Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid fibril-like structure underlies the aggregate structure across the pH range for beta-lactoglobulin.
    Krebs MR; Devlin GL; Donald AM
    Biophys J; 2009 Jun; 96(12):5013-9. PubMed ID: 19527661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications.
    Zhang H; Liu X; Yang M; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():8-13. PubMed ID: 26117733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.
    Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite-silk fibroin nanocomposite.
    Wang L; Nemoto R; Senna M
    J Mater Sci Mater Med; 2004 Mar; 15(3):261-5. PubMed ID: 15334998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-bioengineered silk gland fibroin protein: characterization and evaluation of matrices for potential tissue engineering applications.
    Mandal BB; Kundu SC
    Biotechnol Bioeng; 2008 Aug; 100(6):1237-50. PubMed ID: 18383269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic structure and hierarchical assembly of a cross-β amyloid fibril.
    Fitzpatrick AW; Debelouchina GT; Bayro MJ; Clare DK; Caporini MA; Bajaj VS; Jaroniec CP; Wang L; Ladizhansky V; Müller SA; MacPhee CE; Waudby CA; Mott HR; De Simone A; Knowles TP; Saibil HR; Vendruscolo M; Orlova EV; Griffin RG; Dobson CM
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5468-73. PubMed ID: 23513222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the toughness of regenerated silk fibroin film through uniaxial extension.
    Yin J; Chen E; Porter D; Shao Z
    Biomacromolecules; 2010 Nov; 11(11):2890-5. PubMed ID: 20879759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties - A review.
    Xu Z; Shi L; Yang M; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():302-311. PubMed ID: 30573254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the preparation of collagen-modified silk fibroin films and their properties.
    Tang Y; Cao C; Ma X; Chen C; Zhu H
    Biomed Mater; 2006 Dec; 1(4):242-6. PubMed ID: 18458412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel fluoridated silk fibroin/ TiO
    Johari N; Madaah Hosseini HR; Samadikuchaksaraei A
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():265-276. PubMed ID: 29025657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of silicon on the formation of silk fibroin/calcium phosphate composite.
    Li L; Wei KM; Lin F; Kong XD; Yao JM
    J Mater Sci Mater Med; 2008 Feb; 19(2):577-82. PubMed ID: 17619986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the Debye-Waller factor.
    Sasaki N; Saitoh Y; Sharma RK; Furusawa K
    Int J Biol Macromol; 2016 Nov; 92():240-245. PubMed ID: 27411296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro degradation of silk fibroin.
    Horan RL; Antle K; Collette AL; Wang Y; Huang J; Moreau JE; Volloch V; Kaplan DL; Altman GH
    Biomaterials; 2005 Jun; 26(17):3385-93. PubMed ID: 15621227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.