These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 24846175)
1. β1,6 GlcNAc branches-modified PTPRT attenuates its activity and promotes cell migration by STAT3 pathway. Qi J; Li N; Fan K; Yin P; Zhao C; Li Z; Lin Y; Wang L; Zha X PLoS One; 2014; 9(5):e98052. PubMed ID: 24846175 [TBL] [Abstract][Full Text] [Related]
2. β1,6 GlcNAc branches-modified protein tyrosine phosphatase Mu attenuates its tyrosine phosphatase activity and promotes glioma cell migration through PLCγ-PKC pathways. Gao Y; Yang F; Su Z; He Z; Xiao J; Xu Y; Zha X; Xu F; Wang L Biochem Biophys Res Commun; 2018 Oct; 505(2):569-577. PubMed ID: 30274773 [TBL] [Abstract][Full Text] [Related]
3. EGF-mediated migration signaling activated by N-acetylglucosaminyltransferase-V via receptor protein tyrosine phosphatase kappa. Wang C; Yang Y; Yang Z; Liu M; Li Z; Sun L; Mei C; Chen H; Chen L; Wang L; Zha X Arch Biochem Biophys; 2009 Jun; 486(1):64-72. PubMed ID: 19236842 [TBL] [Abstract][Full Text] [Related]
4. β1,6 GlcNAc branches-modified protein tyrosine phosphatase alpha enhances its stability and promotes focal adhesion formation in MCF-7 cells. Xiao J; Gao Y; Yang F; Wang C; Xu Y; Chang R; Zha X; Wang L Biochem Biophys Res Commun; 2017 Jan; 482(4):1455-1461. PubMed ID: 27965091 [TBL] [Abstract][Full Text] [Related]
5. Receptor tyrosine phosphatase beta (RPTPbeta) activity and signaling are attenuated by glycosylation and subsequent cell surface galectin-1 binding. Abbott KL; Matthews RT; Pierce M J Biol Chem; 2008 Nov; 283(48):33026-35. PubMed ID: 18838383 [TBL] [Abstract][Full Text] [Related]
6. Altered β1,6-GlcNAc branched N-glycans impair TGF-β-mediated epithelial-to-mesenchymal transition through Smad signalling pathway in human lung cancer. Li N; Xu H; Fan K; Liu X; Qi J; Zhao C; Yin P; Wang L; Li Z; Zha X J Cell Mol Med; 2014 Oct; 18(10):1975-91. PubMed ID: 24913443 [TBL] [Abstract][Full Text] [Related]
7. N-Glycosylation of laminin-332 regulates its biological functions. A novel function of the bisecting GlcNAc. Kariya Y; Kato R; Itoh S; Fukuda T; Shibukawa Y; Sanzen N; Sekiguchi K; Wada Y; Kawasaki N; Gu J J Biol Chem; 2008 Nov; 283(48):33036-45. PubMed ID: 18812317 [TBL] [Abstract][Full Text] [Related]
9. Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity. Yamamoto H; Swoger J; Greene S; Saito T; Hurh J; Sweeley C; Leestma J; Mkrdichian E; Cerullo L; Nishikawa A; Ihara Y; Taniguchi N; Moskal JR Cancer Res; 2000 Jan; 60(1):134-42. PubMed ID: 10646865 [TBL] [Abstract][Full Text] [Related]
10. Developmental expression of the neuron-specific N-acetylglucosaminyltransferase Vb (GnT-Vb/IX) and identification of its in vivo glycan products in comparison with those of its paralog, GnT-V. Lee JK; Matthews RT; Lim JM; Swanier K; Wells L; Pierce JM J Biol Chem; 2012 Aug; 287(34):28526-36. PubMed ID: 22715095 [TBL] [Abstract][Full Text] [Related]
11. Diverse expression of N-acetylglucosaminyltransferase V and complex-type β1,6-branched N-glycans in uveal and cutaneous melanoma cells. Pocheć E; Rydlewska M; Przybyło M; Lityńska A Acta Biochim Pol; 2015; 62(2):323-8. PubMed ID: 26098720 [TBL] [Abstract][Full Text] [Related]
12. Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. Zhang X; Guo A; Yu J; Possemato A; Chen Y; Zheng W; Polakiewicz RD; Kinzler KW; Vogelstein B; Velculescu VE; Wang ZJ Proc Natl Acad Sci U S A; 2007 Mar; 104(10):4060-4. PubMed ID: 17360477 [TBL] [Abstract][Full Text] [Related]
13. Altered β1,6-GlcNAc and bisecting GlcNAc-branched N-glycan on integrin β1 are associated with early spontaneous miscarriage in humans. Zhang M; Wang M; Gao R; Liu X; Chen X; Geng Y; Ding Y; Wang Y; He J Hum Reprod; 2015 Sep; 30(9):2064-75. PubMed ID: 26109616 [TBL] [Abstract][Full Text] [Related]
14. N-acetylglucosaminyltransferase IVa regulates metastatic potential of mouse hepatocarcinoma cells through glycosylation of CD147. Fan J; Wang S; Yu S; He J; Zheng W; Zhang J Glycoconj J; 2012 Aug; 29(5-6):323-34. PubMed ID: 22736280 [TBL] [Abstract][Full Text] [Related]
15. PTPRT epigenetic silencing defines lung cancer with STAT3 activation and can direct STAT3 targeted therapies. Sen M; Kindsfather A; Danilova L; Zhang F; Colombo R; LaPorte MG; Kurland BF; Huryn DM; Wipf P; Herman JG Epigenetics; 2020; 15(6-7):604-617. PubMed ID: 31595832 [TBL] [Abstract][Full Text] [Related]
17. Reversal effect of GnT-V on the radioresistance of human nasopharyngeal carcinoma cells by alteration β1, 6-GlcNAc branched N-glycans. Wu JB; Shen L; Qiu L; Duan QW; Luo ZG; Dong XX Int J Clin Exp Pathol; 2015; 8(9):9901-11. PubMed ID: 26617699 [TBL] [Abstract][Full Text] [Related]
18. Relations of the type and branch of surface N-glycans to cell adhesion, migration and integrin expressions. Zhang Y; Zhao JH; Zhang XY; Guo HB; Liu F; Chen HL Mol Cell Biochem; 2004 May; 260(1-2):137-46. PubMed ID: 15228095 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of N-acetylglucosaminyltransferases III and V in human melanoma cells. Implications for MCAM N-glycosylation. Bubka M; Link-Lenczowski P; Janik M; Pocheć E; Lityńska A Biochimie; 2014 Aug; 103():37-49. PubMed ID: 24726881 [TBL] [Abstract][Full Text] [Related]
20. Receptor-type tyrosine-protein phosphatase κ directly targets STAT3 activation for tumor suppression in nasal NK/T-cell lymphoma. Chen YW; Guo T; Shen L; Wong KY; Tao Q; Choi WW; Au-Yeung RK; Chan YP; Wong ML; Tang JC; Liu WP; Li GD; Shimizu N; Loong F; Tse E; Kwong YL; Srivastava G Blood; 2015 Mar; 125(10):1589-600. PubMed ID: 25612622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]