These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 24846328)
21. Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques. Zhu J; Lu L; Zeng K ACS Nano; 2013 Feb; 7(2):1666-75. PubMed ID: 23336441 [TBL] [Abstract][Full Text] [Related]
22. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy. Nony L; Bocquet F; Loppacher C; Glatzel T Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441 [TBL] [Abstract][Full Text] [Related]
23. Theoretical simulation of Kelvin probe force microscopy for Si surfaces by taking account of chemical forces. Tsukada M; Masago A; Shimizu M J Phys Condens Matter; 2012 Feb; 24(8):084002. PubMed ID: 22309993 [TBL] [Abstract][Full Text] [Related]
24. Charge transport in nanoscale junctions. Albrecht T; Kornyshev A; Bjørnholm T J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407 [TBL] [Abstract][Full Text] [Related]
25. Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Tao L; Qiao M; Jin R; Li Y; Xiao Z; Wang Y; Zhang N; Xie C; He Q; Jiang D; Yu G; Li Y; Wang S Angew Chem Int Ed Engl; 2019 Jan; 58(4):1019-1024. PubMed ID: 30479055 [TBL] [Abstract][Full Text] [Related]
26. Interpreting Kelvin probe force microscopy under an applied electric field: local electronic behavior of vapor-liquid-solid Si nanowires. Quitoriano NJ; Sanderson RN; Bae SS; Ragan R Nanotechnology; 2013 May; 24(20):205704. PubMed ID: 23609527 [TBL] [Abstract][Full Text] [Related]
27. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices. Gysin U; Glatzel T; Schmölzer T; Schöner A; Reshanov S; Bartolf H; Meyer E Beilstein J Nanotechnol; 2015; 6():2485-97. PubMed ID: 26885461 [TBL] [Abstract][Full Text] [Related]
28. A flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface. Stieg AZ; Rasool HI; Gimzewski JK Rev Sci Instrum; 2008 Oct; 79(10):103701. PubMed ID: 19044713 [TBL] [Abstract][Full Text] [Related]
29. Review: Recent applications of scanning electrochemical microscopy to the study of charge transfer kinetics. Lu X; Wang Q; Liu X Anal Chim Acta; 2007 Oct; 601(1):10-25. PubMed ID: 17904468 [TBL] [Abstract][Full Text] [Related]
30. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes. Ma ZM; Kou L; Naitoh Y; Li YJ; Sugawara Y Nanotechnology; 2013 Jun; 24(22):225701. PubMed ID: 23633495 [TBL] [Abstract][Full Text] [Related]
31. High-low Kelvin probe force spectroscopy for measuring the interface state density. Izumi R; Miyazaki M; Li YJ; Sugawara Y Beilstein J Nanotechnol; 2023; 14():175-189. PubMed ID: 36761682 [TBL] [Abstract][Full Text] [Related]
32. New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors. Sadewasser S; Jelinek P; Fang CK; Custance O; Yamada Y; Sugimoto Y; Abe M; Morita S Phys Rev Lett; 2009 Dec; 103(26):266103. PubMed ID: 20366324 [TBL] [Abstract][Full Text] [Related]
34. Open-loop band excitation Kelvin probe force microscopy. Guo S; Kalinin SV; Jesse S Nanotechnology; 2012 Mar; 23(12):125704. PubMed ID: 22407131 [TBL] [Abstract][Full Text] [Related]
35. Spatially Resolved Probing of Electrochemical Reactions via Energy Discovery Platforms. Ding J; Strelcov E; Kalinin SV; Bassiri-Gharb N Nano Lett; 2015 Jun; 15(6):3669-76. PubMed ID: 26027805 [TBL] [Abstract][Full Text] [Related]
36. Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy. Bae SS; Prokopuk N; Quitoriano NJ; Adams SM; Ragan R Nanotechnology; 2012 Oct; 23(40):405706. PubMed ID: 22995919 [TBL] [Abstract][Full Text] [Related]
37. Probing the Ionic and Electrochemical Phenomena during Resistive Switching of NiO Thin Films. Lu W; Xiao J; Wong LM; Wang S; Zeng K ACS Appl Mater Interfaces; 2018 Mar; 10(9):8092-8101. PubMed ID: 29424523 [TBL] [Abstract][Full Text] [Related]
38. Pulsed Force Kelvin Probe Force Microscopy-A New Type of Kelvin Probe Force Microscopy under Ambient Conditions. Zahmatkeshsaredorahi A; Jakob DS; Xu XG J Phys Chem C Nanomater Interfaces; 2024 Jun; 128(24):9813-9827. PubMed ID: 38919728 [TBL] [Abstract][Full Text] [Related]
39. New electrochemical techniques for probing phase transfer dynamics at dental interfaces in vitro. Unwin PR; Macpherson JV; Beeston MA; Evans NJ; Littlewood D; Hughes NP Adv Dent Res; 1997 Nov; 11(4):548-59. PubMed ID: 9470516 [TBL] [Abstract][Full Text] [Related]
40. Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements. Snowden ME; Güell AG; Lai SC; McKelvey K; Ebejer N; O'Connell MA; Colburn AW; Unwin PR Anal Chem; 2012 Mar; 84(5):2483-91. PubMed ID: 22279955 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]