These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24846649)

  • 1. Support vector regression for improved real-time, simultaneous myoelectric control.
    Ameri A; Kamavuako EN; Scheme EJ; Englehart KB; Parker PA
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1198-209. PubMed ID: 24846649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion Normalized Proportional Control for Improved Pattern Recognition-Based Myoelectric Control.
    Scheme E; Lock B; Hargrove L; Hill W; Kuruganti U; Englehart K
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):149-57. PubMed ID: 23475378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time, simultaneous myoelectric control using force and position-based training paradigms.
    Ameri A; Scheme EJ; Kamavuako EN; Englehart KB; Parker PA
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):279-87. PubMed ID: 24058007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time simultaneous and proportional myoelectric control using intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Dec; 11(6):066013. PubMed ID: 25394366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom.
    Muceli S; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):371-8. PubMed ID: 22180516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom.
    Hwang HJ; Hahne JM; Müller KR
    J Neural Eng; 2014 Oct; 11(5):056008. PubMed ID: 25082779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the usability of intramuscular EMG for prosthetic control: a Fitts' Law approach.
    Kamavuako EN; Scheme EJ; Englehart KB
    J Electromyogr Kinesiol; 2014 Oct; 24(5):770-7. PubMed ID: 25048642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confidence-based rejection for improved pattern recognition myoelectric control.
    Scheme EJ; Hudgins BS; Englehart KB
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1563-70. PubMed ID: 23322756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a selective ensemble-based classification scheme for myoelectric control using a three-dimensional Fitts' Law test.
    Scheme EJ; Englehart KB
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):616-23. PubMed ID: 23193252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Support vector machine-based classification scheme for myoelectric control applied to upper limb.
    Oskoei MA; Hu H
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts' law style assessment procedure.
    Wurth SM; Hargrove LJ
    J Neuroeng Rehabil; 2014 May; 11():91. PubMed ID: 24886664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the robustness of real-time myoelectric control investigations: a multiday Fitts' law approach.
    Waris A; Mendez I; Englehart K; Jensen W; Kamavuako EN
    J Neural Eng; 2019 Apr; 16(2):026003. PubMed ID: 30524028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression.
    Smith LH; Kuiken TA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time, simultaneous myoelectric control using a convolutional neural network.
    Ameri A; Akhaee MA; Scheme E; Englehart K
    PLoS One; 2018; 13(9):e0203835. PubMed ID: 30212573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of direct and pattern recognition control for a two degree-of-freedom above elbow virtual prosthesis.
    Toledo C; Simon A; Muñoz R; Vera A; Leija L; Hargrove L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4332-5. PubMed ID: 23366886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    J Neuroeng Rehabil; 2021 Feb; 18(1):35. PubMed ID: 33588868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of probabilistic weights to enhance linear regression myoelectric control.
    Smith LH; Kuiken TA; Hargrove LJ
    J Neural Eng; 2015 Dec; 12(6):066030. PubMed ID: 26595317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface.
    Siuly S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):526-38. PubMed ID: 22287252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):737-46. PubMed ID: 26302506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.