These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24846751)

  • 1. TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes.
    Jia H; Wang J; Lin F; Monroe CW; Yang J; NuLi Y
    Chem Commun (Camb); 2014 Jul; 50(53):7011-3. PubMed ID: 24846751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing of a Phosphorus, Nitrogen, and Sulfur Three-Flame Retardant Applied in a Gel Poly-
    Deng N; Liu Y; Wang L; Li Q; Hao Y; Feng Y; Cheng B; Kang W; Zhu W
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36705-36716. PubMed ID: 31507166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Intrinsic Flame-Retardant Organic Electrolyte for Safe Lithium-Sulfur Batteries.
    Yang H; Guo C; Chen J; Naveed A; Yang J; Nuli Y; Wang J
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):791-795. PubMed ID: 30426649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode.
    Wang J; Lin F; Jia H; Yang J; Monroe CW; NuLi Y
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10099-104. PubMed ID: 25060633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Chemical Interaction between Lithium Polysulfides and Flame-Retardant Polyphosphazene for Lithium-Sulfur Batteries with Enhanced Safety and Electrochemical Performance.
    Chen P; Wu Z; Guo T; Zhou Y; Liu M; Xia X; Sun J; Lu L; Ouyang X; Wang X; Fu Y; Zhu J
    Adv Mater; 2021 Mar; 33(9):e2007549. PubMed ID: 33506541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Li[(CF
    Ma Q; Qi X; Tong B; Zheng Y; Feng W; Nie J; Hu YS; Li H; Huang X; Chen L; Zhou Z
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29705-29712. PubMed ID: 27726333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the probability of ethoxy(pentafluoro)cyclotriphosphazene (PFPN) as the functional electrolyte additive in lithium-sulfur batteries.
    Li N; Zhang Y; Zhang S; Shi L; Zhang JY; Song KM; Li JC; Zeng FL
    RSC Adv; 2024 Apr; 14(18):12754-12761. PubMed ID: 38645521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries.
    Fu Y; Zu C; Manthiram A
    J Am Chem Soc; 2013 Dec; 135(48):18044-7. PubMed ID: 24245559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive role of surface defects on carbon nanotube cathodes in overpotential and capacity retention of rechargeable lithium-oxygen batteries.
    Huang S; Fan W; Guo X; Meng F; Liu X
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21567-75. PubMed ID: 25397991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.
    Yang X; Zhang L; Zhang F; Huang Y; Chen Y
    ACS Nano; 2014 May; 8(5):5208-15. PubMed ID: 24749945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Effect and Mechanism Analysis of Flame-Retardant Modified Polymer Electrolyte for Lithium-Ion Battery.
    Wu ZH; Huang AC; Tang Y; Yang YP; Liu YC; Li ZP; Zhou HL; Huang CF; Xing ZX; Shu CM; Jiang JC
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34064015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries.
    Gao J; Abruña HD
    J Phys Chem Lett; 2014 Mar; 5(5):882-5. PubMed ID: 26274082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries.
    Hyun WJ; de Moraes ACM; Lim JM; Downing JR; Park KY; Tan MTZ; Hersam MC
    ACS Nano; 2019 Aug; 13(8):9664-9672. PubMed ID: 31318524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.
    Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7783-9. PubMed ID: 26981849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitriding-Interface-Regulated Lithium Plating Enables Flame-Retardant Electrolytes for High-Voltage Lithium Metal Batteries.
    Tan SJ; Yue J; Hu XC; Shen ZZ; Wang WP; Li JY; Zuo TT; Duan H; Xiao Y; Yin YX; Wen R; Guo YG
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7802-7807. PubMed ID: 30977231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries.
    Li Q; Yang H; Xie L; Yang J; Nuli Y; Wang J
    Chem Commun (Camb); 2016 Nov; 52(92):13479-13482. PubMed ID: 27790653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.