These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24846751)

  • 21. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries.
    Liu K; Liu W; Qiu Y; Kong B; Sun Y; Chen Z; Zhuo D; Lin D; Cui Y
    Sci Adv; 2017 Jan; 3(1):e1601978. PubMed ID: 28097221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.
    Fang X; Peng H
    Small; 2015 Apr; 11(13):1488-511. PubMed ID: 25510342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superior rate capability of a sulfur composite cathode in a tris(trimethylsilyl)borate-containing functional electrolyte.
    Wang L; Li Q; Yang H; Yang J; Nuli Y; Wang J
    Chem Commun (Camb); 2016 Dec; 52(100):14430-14433. PubMed ID: 27901523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudo-binary electrolyte, LiBH4-LiCl, for bulk-type all-solid-state lithium-sulfur battery.
    Unemoto A; Chen C; Wang Z; Matsuo M; Ikeshoji T; Orimo S
    Nanotechnology; 2015 Jan; 26(25):254001. PubMed ID: 26041380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lithium-sulfur batteries: electrochemistry, materials, and prospects.
    Yin YX; Xin S; Guo YG; Wan LJ
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13186-200. PubMed ID: 24243546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction.
    Kulisch J; Sommer H; Brezesinski T; Janek J
    Phys Chem Chem Phys; 2014 Sep; 16(35):18765-71. PubMed ID: 25077958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability of the Solid Electrolyte Interface on the Li Electrode in Li-S Batteries.
    Zheng D; Yang XQ; Qu D
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10360-6. PubMed ID: 27045986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.
    Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using waste Li ion batteries as cathodes in rechargeable Li-liquid batteries.
    Chun J; Chung M; Lee J; Kim Y
    Phys Chem Chem Phys; 2013 May; 15(19):7036-40. PubMed ID: 23559258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes.
    Xu T; Song J; Gordin ML; Sohn H; Yu Z; Chen S; Wang D
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11355-62. PubMed ID: 24090278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Porous spherical carbon/sulfur nanocomposites by aerosol-assisted synthesis: the effect of pore structure and morphology on their electrochemical performance as lithium/sulfur battery cathodes.
    Sohn H; Gordin ML; Xu T; Chen S; Lv D; Song J; Manivannan A; Wang D
    ACS Appl Mater Interfaces; 2014 May; 6(10):7596-606. PubMed ID: 24758613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries.
    Li X; Wolden CA; Ban C; Yang Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28444-51. PubMed ID: 26633238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries.
    Fu Y; Su YS; Manthiram A
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6046-52. PubMed ID: 23092250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced cycling stability of lithium sulfur batteries using sulfur-polyaniline-graphene nanoribbon composite cathodes.
    Li L; Ruan G; Peng Z; Yang Y; Fei H; Raji AR; Samuel EL; Tour JM
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15033-9. PubMed ID: 25141233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries.
    Nelson J; Misra S; Yang Y; Jackson A; Liu Y; Wang H; Dai H; Andrews JC; Cui Y; Toney MF
    J Am Chem Soc; 2012 Apr; 134(14):6337-43. PubMed ID: 22432568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites.
    Wei S; Ma L; Hendrickson KE; Tu Z; Archer LA
    J Am Chem Soc; 2015 Sep; 137(37):12143-52. PubMed ID: 26325146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.