These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 24846833)
1. Involvement of oxidative stress, nuclear factor kappa B and the ubiquitin proteasomal pathway in dysferlinopathy. Rajakumar D; Senguttuvan S; Alexander M; Oommen A Life Sci; 2014 Jul; 108(1):54-61. PubMed ID: 24846833 [TBL] [Abstract][Full Text] [Related]
2. Oxidative stress, NF-κB and the ubiquitin proteasomal pathway in the pathology of calpainopathy. Rajakumar D; Alexander M; Oommen A Neurochem Res; 2013 Oct; 38(10):2009-18. PubMed ID: 23846623 [TBL] [Abstract][Full Text] [Related]
3. The absence of dysferlin induces the expression of functional connexin-based hemichannels in human myotubes. Cea LA; Bevilacqua JA; Arriagada C; Cárdenas AM; Bigot A; Mouly V; Sáez JC; Caviedes P BMC Cell Biol; 2016 May; 17 Suppl 1(Suppl 1):15. PubMed ID: 27229680 [TBL] [Abstract][Full Text] [Related]
4. Induction of protein degradation in skeletal muscle by a phorbol ester involves upregulation of the ubiquitin-proteasome proteolytic pathway. Wyke SM; Tisdale MJ Life Sci; 2006 May; 78(25):2898-910. PubMed ID: 16343552 [TBL] [Abstract][Full Text] [Related]
5. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting. Tisdale MJ J Support Oncol; 2005; 3(3):209-17. PubMed ID: 15915823 [TBL] [Abstract][Full Text] [Related]
6. The RAGE pathway in inflammatory myopathies and limb girdle muscular dystrophy. Haslbeck KM; Friess U; Schleicher ED; Bierhaus A; Nawroth PP; Kirchner A; Pauli E; Neundörfer B; Heuss D Acta Neuropathol; 2005 Sep; 110(3):247-54. PubMed ID: 15986224 [TBL] [Abstract][Full Text] [Related]
7. Muscle atrophy, ubiquitin-proteasome, and autophagic pathways in dysferlinopathy. Fanin M; Nascimbeni AC; Angelini C Muscle Nerve; 2014 Sep; 50(3):340-7. PubMed ID: 24395438 [TBL] [Abstract][Full Text] [Related]
8. Proteasomal inhibition restores biological function of mis-sense mutated dysferlin in patient-derived muscle cells. Azakir BA; Di Fulvio S; Kinter J; Sinnreich M J Biol Chem; 2012 Mar; 287(13):10344-10354. PubMed ID: 22318734 [TBL] [Abstract][Full Text] [Related]
9. Methodology to study NF-κB/RelA ubiquitination in vivo. Li H; Starokadomskyy P; Burstein E Methods Mol Biol; 2015; 1280():371-81. PubMed ID: 25736761 [TBL] [Abstract][Full Text] [Related]
10. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system. Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880 [TBL] [Abstract][Full Text] [Related]
11. Pim-1 controls NF-kappaB signalling by stabilizing RelA/p65. Nihira K; Ando Y; Yamaguchi T; Kagami Y; Miki Y; Yoshida K Cell Death Differ; 2010 Apr; 17(4):689-98. PubMed ID: 19911008 [TBL] [Abstract][Full Text] [Related]
12. Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. Langen RC; Van Der Velden JL; Schols AM; Kelders MC; Wouters EF; Janssen-Heininger YM FASEB J; 2004 Feb; 18(2):227-37. PubMed ID: 14769817 [TBL] [Abstract][Full Text] [Related]
13. Is there a common mechanism linking muscle wasting in various disease types? Tisdale MJ Curr Opin Support Palliat Care; 2007 Dec; 1(4):287-92. PubMed ID: 18685377 [TBL] [Abstract][Full Text] [Related]
14. Role of PARP activity in lung cancer-induced cachexia: Effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype. Chacon-Cabrera A; Mateu-Jimenez M; Langohr K; Fermoselle C; García-Arumí E; Andreu AL; Yelamos J; Barreiro E J Cell Physiol; 2017 Dec; 232(12):3744-3761. PubMed ID: 28177129 [TBL] [Abstract][Full Text] [Related]
15. NF-kappaB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin-proteasome system in skeletal muscle. Wyke SM; Tisdale MJ Br J Cancer; 2005 Feb; 92(4):711-21. PubMed ID: 15714207 [TBL] [Abstract][Full Text] [Related]
16. NF-kappaB-dependent expression of the antiapoptotic factor c-FLIP is regulated by calpain 3, the protein involved in limb-girdle muscular dystrophy type 2A. Benayoun B; Baghdiguian S; Lajmanovich A; Bartoli M; Daniele N; Gicquel E; Bourg N; Raynaud F; Pasquier MA; Suel L; Lochmuller H; Lefranc G; Richard I FASEB J; 2008 May; 22(5):1521-9. PubMed ID: 18073330 [TBL] [Abstract][Full Text] [Related]
17. Role of thrombospondin 1 in macrophage inflammation in dysferlin myopathy. De Luna N; Gallardo E; Sonnet C; Chazaud B; Dominguez-Perles R; Suarez-Calvet X; Gherardi RK; Illa I J Neuropathol Exp Neurol; 2010 Jun; 69(6):643-53. PubMed ID: 20467328 [TBL] [Abstract][Full Text] [Related]
18. Myogenesis in dysferlin-deficient myoblasts is inhibited by an intrinsic inflammatory response. Cohen TV; Cohen JE; Partridge TA Neuromuscul Disord; 2012 Jul; 22(7):648-58. PubMed ID: 22560623 [TBL] [Abstract][Full Text] [Related]
19. Dysferlin function in skeletal muscle: Possible pathological mechanisms and therapeutical targets in dysferlinopathies. Cárdenas AM; González-Jamett AM; Cea LA; Bevilacqua JA; Caviedes P Exp Neurol; 2016 Sep; 283(Pt A):246-54. PubMed ID: 27349407 [TBL] [Abstract][Full Text] [Related]
20. Redefining dysferlinopathy phenotypes based on clinical findings and muscle imaging studies. Paradas C; Llauger J; Diaz-Manera J; Rojas-García R; De Luna N; Iturriaga C; Márquez C; Usón M; Hankiewicz K; Gallardo E; Illa I Neurology; 2010 Jul; 75(4):316-23. PubMed ID: 20574037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]