BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24847063)

  • 1. Chromatin fiber polymorphism triggered by variations of DNA linker lengths.
    Collepardo-Guevara R; Schlick T
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8061-6. PubMed ID: 24847063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forced unraveling of chromatin fibers with nonuniform linker DNA lengths.
    Ozer G; Collepardo-Guevara R; Schlick T
    J Phys Condens Matter; 2015 Feb; 27(6):064113. PubMed ID: 25564319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation among DNA Linker Length, Linker Histone Concentration, and Histone Tails in Chromatin.
    Luque A; Ozer G; Schlick T
    Biophys J; 2016 Jun; 110(11):2309-2319. PubMed ID: 27276249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions.
    Beshnova DA; Cherstvy AG; Vainshtein Y; Teif VB
    PLoS Comput Biol; 2014 Jul; 10(7):e1003698. PubMed ID: 24992723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depletion effects massively change chromatin properties and influence genome folding.
    Diesinger PM; Heermann DW
    Biophys J; 2009 Oct; 97(8):2146-53. PubMed ID: 19843447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions.
    Farr SE; Woods EJ; Joseph JA; Garaizar A; Collepardo-Guevara R
    Nat Commun; 2021 May; 12(1):2883. PubMed ID: 34001913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone depletion facilitates chromatin loops on the kilobasepair scale.
    Diesinger PM; Kunkel S; Langowski J; Heermann DW
    Biophys J; 2010 Nov; 99(9):2995-3001. PubMed ID: 21044597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of the cylindrical shape of the nucleosomes and H1 defects on properties of chromatin.
    Diesinger PM; Heermann DW
    Biophys J; 2008 Jun; 94(11):4165-72. PubMed ID: 18234821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscale Modeling of Nucleosome-Binding Antibody PL2-6: Mono- versus Bivalent Chromatin Complexes.
    Myers CG; Olins DE; Olins AL; Schlick T
    Biophys J; 2020 May; 118(9):2066-2076. PubMed ID: 31668748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal Motion of Chromatin Fibers Is Governed by Dynamics of Uncompressed Linker Strands.
    Basak R; Rosencrans W; Yadav I; Yan P; Berezhnoy NV; Chen Q; van Kan JA; Nordenskiöld L; Zinchenko A; van der Maarel JRC
    Biophys J; 2020 Dec; 119(11):2326-2334. PubMed ID: 33121944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging.
    Cherstvy AG; Teif VB
    J Biol Phys; 2013 Jun; 39(3):363-85. PubMed ID: 23860914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule compaction of megabase-long chromatin molecules by multivalent cations.
    Zinchenko A; Berezhnoy NV; Wang S; Rosencrans WM; Korolev N; van der Maarel JRC; Nordenskiöld L
    Nucleic Acids Res; 2018 Jan; 46(2):635-649. PubMed ID: 29145649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin Compaction Multiscale Modeling: A Complex Synergy Between Theory, Simulation, and Experiment.
    Bendandi A; Dante S; Zia SR; Diaspro A; Rocchia W
    Front Mol Biosci; 2020; 7():15. PubMed ID: 32158765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction.
    Dekker J
    J Biol Chem; 2008 Dec; 283(50):34532-40. PubMed ID: 18930918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explicit ion modeling predicts physicochemical interactions for chromatin organization.
    Lin X; Zhang B
    Elife; 2024 Jan; 12():. PubMed ID: 38289342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution genome-wide mapping of the primary structure of chromatin.
    Zhang Z; Pugh BF
    Cell; 2011 Jan; 144(2):175-86. PubMed ID: 21241889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting scale-dependent chromatin polymer properties from systematic coarse-graining.
    Kadam S; Kumari K; Manivannan V; Dutta S; Mitra MK; Padinhateeri R
    Nat Commun; 2023 Jul; 14(1):4108. PubMed ID: 37433821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium switching of segmental states can influence compaction of chromatin.
    Sahoo S; Kadam S; Padinhateeri R; Kumar PBS
    Soft Matter; 2024 Jun; 20(23):4621-4632. PubMed ID: 38819321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The function of the epigenome in cell reprogramming.
    Lanzuolo C; Orlando V
    Cell Mol Life Sci; 2007 May; 64(9):1043-62. PubMed ID: 17347798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico design of DNA sequences for in vivo nucleosome positioning.
    Routhier E; Joubert A; Westbrook A; Pierre E; Lancrey A; Cariou M; Boulé JB; Mozziconacci J
    Nucleic Acids Res; 2024 Jun; ():. PubMed ID: 38828788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.