These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 24847065)
1. Optimal lamellar arrangement in fish gills. Park K; Kim W; Kim HY Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8067-70. PubMed ID: 24847065 [TBL] [Abstract][Full Text] [Related]
2. Gill morphometrics in relation to gas transfer and ram ventilation in high-energy demand teleosts: scombrids and billfishes. Wegner NC; Sepulveda CA; Bull KB; Graham JB J Morphol; 2010 Jan; 271(1):36-49. PubMed ID: 19658098 [TBL] [Abstract][Full Text] [Related]
3. Diffusion in the interlamellar water of fish gills. Piiper J Fed Proc; 1982 Apr; 41(6):2140-2. PubMed ID: 7075786 [TBL] [Abstract][Full Text] [Related]
4. Functional morphology of the gills of the shortfin mako, Isurus oxyrinchus, a lamnid shark. Wegner NC; Sepulveda CA; Olson KR; Hyndman KA; Graham JB J Morphol; 2010 Aug; 271(8):937-48. PubMed ID: 20623624 [TBL] [Abstract][Full Text] [Related]
5. Morphology and vascular anatomy of the gills of a primitive air-breathing fish, the bowfin (Amia calva). Olson KR Cell Tissue Res; 1981; 218(3):499-517. PubMed ID: 7261039 [TBL] [Abstract][Full Text] [Related]
6. A computational model of flow between the microscale respiratory structures of fish gills. Strother JA J Theor Biol; 2013 Dec; 338():23-40. PubMed ID: 23999283 [TBL] [Abstract][Full Text] [Related]
7. A biomechanically derived minimum work model of the fish gill lamellar system exhibits its exquisite morphological arrangement and perfusate regulation for oxygen uptake from water. Kamiya A; Yamamoto K J Biomech; 2019 May; 88():155-163. PubMed ID: 31023485 [TBL] [Abstract][Full Text] [Related]
8. Gills of antarctic fish. Rankin JC; Tuurala H Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):149-63. PubMed ID: 11253779 [TBL] [Abstract][Full Text] [Related]
9. Structural adaptations for ram ventilation: gill fusions in scombrids and billfishes. Wegner NC; Sepulveda CA; Aalbers SA; Graham JB J Morphol; 2013 Jan; 274(1):108-20. PubMed ID: 23023918 [TBL] [Abstract][Full Text] [Related]
10. Implications for osmorespiratory compromise by anatomical remodeling in the gills of Arapaima gigas. Ramos CA; Fernandes MN; da Costa OT; Duncan WP Anat Rec (Hoboken); 2013 Oct; 296(10):1664-75. PubMed ID: 23956000 [TBL] [Abstract][Full Text] [Related]
11. Impact of ontogenetic changes in branchial morphology on gill function in Arapaima gigas. Gonzalez RJ; Brauner CJ; Wang YX; Richards JG; Patrick ML; Xi W; Matey V; Val AL Physiol Biochem Zool; 2010; 83(2):322-32. PubMed ID: 20100089 [TBL] [Abstract][Full Text] [Related]
12. Oxygen utilization and the branchial pressure gradient during ram ventilation of the shortfin mako, Isurus oxyrinchus: is lamnid shark-tuna convergence constrained by elasmobranch gill morphology? Wegner NC; Lai NC; Bull KB; Graham JB J Exp Biol; 2012 Jan; 215(Pt 1):22-8. PubMed ID: 22162850 [TBL] [Abstract][Full Text] [Related]
13. Hypoxia-induced developmental plasticity of the gills and air-breathing organ of Trichopodus trichopterus. Blank T; Burggren W J Fish Biol; 2014 Mar; 84(3):808-26. PubMed ID: 24502819 [TBL] [Abstract][Full Text] [Related]
14. Structures and immunolocalization of Na+, K+ -ATPase, Na+ /H+ exchanger 3 and vacuolar-type H+ -ATPase in the gills of blennies (Teleostei: Blenniidae) inhabiting rocky intertidal areas. Uchiyama M; Komiyama M; Yoshizawa H; Shimizu N; Konno N; Matsuda K J Fish Biol; 2012 May; 80(6):2236-52. PubMed ID: 22551179 [TBL] [Abstract][Full Text] [Related]
15. The osmorespiratory compromise in the fish gill. Wood CM; Eom J Comp Biochem Physiol A Mol Integr Physiol; 2021 Apr; 254():110895. PubMed ID: 33429056 [TBL] [Abstract][Full Text] [Related]
16. The source of lamellar mitochondria-rich cells in the air-breathing fish, Trichogaster leeri. Lee W; Huang CY; Lin HC J Exp Zool A Ecol Genet Physiol; 2008 Apr; 309(4):198-205. PubMed ID: 18278804 [TBL] [Abstract][Full Text] [Related]
17. Vascular anatomy of the fish gill. Olson KR J Exp Zool; 2002 Aug; 293(3):214-31. PubMed ID: 12115898 [TBL] [Abstract][Full Text] [Related]
18. The distribution of mitochondria-rich cells in the gills of air-breathing fishes. Lin HC; Sung WT Physiol Biochem Zool; 2003; 76(2):215-28. PubMed ID: 12794675 [TBL] [Abstract][Full Text] [Related]
19. Technical evaluation of oxygen transfer rates of fish gills and artificial gills. Matsuda N; Sakai K ASAIO J; 1999; 45(4):293-8. PubMed ID: 10445734 [TBL] [Abstract][Full Text] [Related]
20. Vascular anatomy of the gills in a high energy demand teleost, the skipjack tuna (Katsuwonus pelamis). Olson KR; Dewar H; Graham JB; Brill RW J Exp Zool A Comp Exp Biol; 2003 May; 297(1):17-31. PubMed ID: 12911110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]