These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2484707)

  • 1. Mechanism underlying the inhibitory interaction between the nitrovasodilator SIN-1 and the endothelium.
    Flavahan NA; Vanhoutte PM
    J Cardiovasc Pharmacol; 1989; 14 Suppl 11():S86-90. PubMed ID: 2484707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of SIN-1 on isolated canine basilar arteries.
    Katusic ZS; Vanhoutte PM
    J Cardiovasc Pharmacol; 1989; 14 Suppl 11():S72-5. PubMed ID: 2484704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxations to SIN-1, nitric oxide, and sodium nitroprusside in canine arteries and veins.
    Miller VM; Vanhoutte PM
    J Cardiovasc Pharmacol; 1989; 14 Suppl 11():S67-71. PubMed ID: 2484703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sydnonimine C87-3754 evokes endothelium-independent relaxations and prevents endothelium-dependent contractions in blood vessels of the dog.
    Schini VB; Bond R; Gao Y; Illiano S; Junquero DC; Mombouli JV; Nagao T; Smart F; Vanhoutte PM
    J Cardiovasc Pharmacol; 1993; 22 Suppl 7():S10-6. PubMed ID: 7504762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between endothelium-derived nitric oxide and SIN-1 in human and porcine blood vessels.
    Lüscher TF; Richard V; Yang ZH
    J Cardiovasc Pharmacol; 1989; 14 Suppl 11():S76-80. PubMed ID: 2484705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-dependent regulation of vascular tone of the porcine ophthalmic artery.
    Yao K; Tschudi M; Flammer J; Lüscher TF
    Invest Ophthalmol Vis Sci; 1991 May; 32(6):1791-8. PubMed ID: 2032802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-derived hyperpolarizing factor mediated relaxations in pig coronary arteries do not involve Gi/o proteins.
    Ng KF; Leung SW; Man RY; Vanhoutte PM
    Acta Pharmacol Sin; 2008 Dec; 29(12):1419-24. PubMed ID: 19026160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of endothelium-dependent relaxations by phorbol myristate acetate in canine coronary arteries: role of a pertussis toxin-sensitive G-protein.
    Flavahan NA; Shimokawa H; Vanhoutte PM
    J Pharmacol Exp Ther; 1991 Jan; 256(1):50-5. PubMed ID: 1899121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Important role of endogenous hydrogen peroxide in pacing-induced metabolic coronary vasodilation in dogs in vivo.
    Yada T; Shimokawa H; Hiramatsu O; Shinozaki Y; Mori H; Goto M; Ogasawara Y; Kajiya F
    J Am Coll Cardiol; 2007 Sep; 50(13):1272-8. PubMed ID: 17888845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide and effects of cationic polypeptides in canine cerebral arteries.
    Kinoshita H; Katusic ZS
    J Cereb Blood Flow Metab; 1997 Apr; 17(4):470-80. PubMed ID: 9143230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biphasic release of endothelium-derived relaxing factor(s) by acetylcholine from perfused canine femoral arteries. Characterization of muscarinic receptors.
    Rubanyi GM; McKinney M; Vanhoutte PM
    J Pharmacol Exp Ther; 1987 Mar; 240(3):802-8. PubMed ID: 2435886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial L-arginine pathway and relaxations to vasopressin in canine basilar artery.
    Cosentino F; Sill JC; Katusić ZS
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H413-8. PubMed ID: 8383455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasomotor responses of canine coronary arterial rings to NG-monomethyl-L-arginine and N omega nitro L-arginine methyl ester.
    Winn MJ; Asante NK; Ku DD
    J Pharmacol Exp Ther; 1993 Jan; 264(1):265-70. PubMed ID: 8423529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholine stimulates release of endothelium-derived relaxing factor in coronary arteries of human organ donors.
    Blaise GA; Stewart DJ; Guérard MJ
    Can J Cardiol; 1993 Nov; 9(9):813-20. PubMed ID: 8281481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulatory and inhibitory action of nitric oxide donor agents vs. nitrovasodilators on reactive oxygen production by isolated polymorphonuclear leukocytes.
    Pieper GM; Clarke GA; Gross GJ
    J Pharmacol Exp Ther; 1994 May; 269(2):451-6. PubMed ID: 8182511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-dependent vasodilatation in human epicardial coronary arteries: effect of prolonged exposure to glyceryl trinitrate or SIN-1.
    Kuhn M; Förstermann U
    J Cardiovasc Pharmacol; 1989; 14 Suppl 11():S47-54. PubMed ID: 2484699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of SIN-1 on electrical responses of the smooth muscle of the canine saphenous vein.
    Komori K; Vanhoutte PM
    J Cardiovasc Pharmacol; 1989; 14 Suppl 11():S62-6. PubMed ID: 2484702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ouabain inhibits endothelium-dependent relaxations to arachidonic acid in canine coronary arteries.
    Rubanyi GM; Vanhoutte PM
    J Pharmacol Exp Ther; 1985 Oct; 235(1):81-6. PubMed ID: 3930700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle.
    Rubanyi GM; Vanhoutte PM
    Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.