These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24847198)

  • 1. Encoding of forelimb forces by corticospinal tract activity in the rat.
    Guo Y; Foulds RA; Adamovich SV; Sahin M
    Front Neurosci; 2014; 8():62. PubMed ID: 24847198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticospinal signals recorded with MEAs can predict the volitional forearm forces in rats.
    Guo Y; Mesut S; Foulds RA; Adamovich SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1984-7. PubMed ID: 24110105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of forelimb muscle EMGs from the corticospinal signals in rats.
    Gok S; Sahin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2780-2783. PubMed ID: 28268895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Forelimb EMGs and Movement Phases from Corticospinal Signals in the Rat During the Reach-to-Pull Task.
    Gok S; Sahin M
    Int J Neural Syst; 2019 Sep; 29(7):1950009. PubMed ID: 31111753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can motor volition be extracted from the spinal cord?
    Prasad A; Sahin M
    J Neuroeng Rehabil; 2012 Jun; 9():41. PubMed ID: 22713735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of motor activity from the cervical spinal cord of behaving rats.
    Prasad A; Sahin M
    J Neural Eng; 2006 Dec; 3(4):287-92. PubMed ID: 17124332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent replication of motor cortex and cervical spinal cord electrical stimulation to promote forelimb motor function after spinal cord injury in rats.
    Yang Q; Ramamurthy A; Lall S; Santos J; Ratnadurai-Giridharan S; Lopane M; Zareen N; Alexander H; Ryan D; Martin JH; Carmel JB
    Exp Neurol; 2019 Oct; 320():112962. PubMed ID: 31125548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experimental study of recording and analysing electrophysiological signals from corticospinal tract in rats].
    Shen WX; Yuan Y; Jiang ZL; Lv GM; Yao J
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2011 May; 27(2):168-72. PubMed ID: 21845863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of neural activity recorded from the descending tracts of the rat spinal cord.
    Prasad A; Sahin M
    Front Neurosci; 2010 Jun; 4():21. PubMed ID: 20589238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of spinal cord motor signals using the FastICA method.
    Tie Y; Sahin M
    J Neural Eng; 2005 Dec; 2(4):90-6. PubMed ID: 16317232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats.
    Chen XY; Carp JS; Chen L; Wolpaw JR
    Exp Brain Res; 2002 May; 144(1):88-94. PubMed ID: 11976762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2005 Jul; 194(1):161-74. PubMed ID: 15899253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Biering-Sørensen F; Nielsen JB
    Prog Brain Res; 2015; 218():79-101. PubMed ID: 25890133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical PKC inhibition promotes axonal regeneration of the corticospinal tract and forelimb functional recovery after cervical dorsal spinal hemisection in adult rats.
    Wang X; Hu J; She Y; Smith GM; Xu XM
    Cereb Cortex; 2014 Nov; 24(11):3069-79. PubMed ID: 23810979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stathmin is enriched in the developing corticospinal tract.
    Fuller HR; Slade R; Jovanov-Milošević N; Babić M; Sedmak G; Šimić G; Fuszard MA; Shirran SL; Botting CH; Gates MA
    Mol Cell Neurosci; 2015 Nov; 69():12-21. PubMed ID: 26370173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
    Hurd C; Weishaupt N; Fouad K
    Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticospinal tract sprouting in the injured rat spinal cord stimulated by Schwann cell preconditioning of the motor cortex.
    Wills TE; Batchelor PE; Kerr NF; Sidon K; Katz M; Loy C; Howells DW
    Neurol Res; 2013 Sep; 35(7):763-72. PubMed ID: 23582158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probable corticospinal tract control of spinal cord plasticity in the rat.
    Chen XY; Wolpaw JR
    J Neurophysiol; 2002 Feb; 87(2):645-52. PubMed ID: 11826033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.