These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24847248)

  • 1. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions.
    Sankar V; Patrick E; Dieme R; Sanchez JC; Prasad A; Nishida T
    Front Neuroeng; 2014; 7():13. PubMed ID: 24847248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants.
    Prasad A; Xue QS; Dieme R; Sankar V; Mayrand RC; Nishida T; Streit WJ; Sanchez JC
    Front Neuroeng; 2014; 7():2. PubMed ID: 24550823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species.
    Takmakov P; Ruda K; Scott Phillips K; Isayeva IS; Krauthamer V; Welle CG
    J Neural Eng; 2015 Apr; 12(2):026003. PubMed ID: 25627426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive characterization of tungsten microwires in chronic neurocortical implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit W; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():755-8. PubMed ID: 23366002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates.
    Barrese JC; Aceros J; Donoghue JP
    J Neural Eng; 2016 Apr; 13(2):026003. PubMed ID: 26824680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Parylene sheath neural probe for chronic recordings.
    Kim BJ; Kuo JT; Hara SA; Lee CD; Yu L; Gutierrez CA; Hoang TQ; Pikov V; Meng E
    J Neural Eng; 2013 Aug; 10(4):045002. PubMed ID: 23723130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrosion of tungsten microelectrodes used in neural recording applications.
    Patrick E; Orazem ME; Sanchez JC; Nishida T
    J Neurosci Methods; 2011 Jun; 198(2):158-71. PubMed ID: 21470563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing surface area while maintaining implant penetrating profile lowers the brain foreign body response to chronically implanted planar silicon microelectrode arrays.
    Skousen JL; Merriam SM; Srivannavit O; Perlin G; Wise KD; Tresco PA
    Prog Brain Res; 2011; 194():167-80. PubMed ID: 21867802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates.
    Malaga KA; Schroeder KE; Patel PR; Irwin ZT; Thompson DE; Nicole Bentley J; Lempka SF; Chestek CA; Patil PG
    J Neural Eng; 2016 Feb; 13(1):016010. PubMed ID: 26655972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling biotic and abiotic metrics to create a testbed for predicting neural electrode performance.
    Prasad A; Sankar V; Dyer AT; Knott E; Xue QS; Nishida T; Reynolds JR; Shaw G; Streit W; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3020-3. PubMed ID: 22254976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly compliant serpentine shaped polyimide interconnect for front-end strain relief in chronic neural implants.
    Sankar V; Sanchez JC; McCumiskey E; Brown N; Taylor CR; Ehlert GJ; Sodano HA; Nishida T
    Front Neurol; 2013; 4():124. PubMed ID: 24062716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.
    Alba NA; Du ZJ; Catt KA; Kozai TD; Cui XT
    Biosensors (Basel); 2015 Oct; 5(4):618-46. PubMed ID: 26473938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simplified method for manufacturing glass-insulated metal microelectrodes.
    Sugiyama K; Dong WK; Chudler EH
    J Neurosci Methods; 1994 Jul; 53(1):73-80. PubMed ID: 7990516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic impedance spectroscopy of an endovascular stent-electrode array.
    Opie NL; John SE; Rind GS; Ronayne SM; Grayden DB; Burkitt AN; May CN; O'Brien TJ; Oxley TJ
    J Neural Eng; 2016 Aug; 13(4):046020. PubMed ID: 27378157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances.
    Johnson MD; Otto KJ; Kipke DR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):160-5. PubMed ID: 16003894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A time domain finite element model of extracellular neural stimulation predicts that non-rectangular stimulus waveforms may offer safety benefits.
    Cantrell DR; Troy JB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2768-71. PubMed ID: 19163279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.