These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24847343)

  • 1. Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions.
    Kessler M; Toivonen JM; Sylvester SP; Kluge J; Hertel D
    Front Plant Sci; 2014; 5():194. PubMed ID: 24847343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.
    Rehm EM; Feeley KJ
    Ecology; 2015 Jul; 96(7):1856-65. PubMed ID: 26378308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ToTE: A global database on trees of the treeline ecotone.
    Dar FA; Hamid M; Malik RA; Wani SA; Singh CP; Shah MA; Khuroo AA
    Ecology; 2024 Jun; 105(6):e4309. PubMed ID: 38724027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecohydrological assessment of the water balance of the world's highest elevation tropical forest (Polylepis).
    Mosquera GM; Marín F; Carabajo-Hidalgo A; Asbjornsen H; Célleri R; Crespo P
    Sci Total Environ; 2024 Sep; 941():173671. PubMed ID: 38825194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different climate sensitivity for radial growth, but uniform for tree-ring stable isotopes along an aridity gradient in Polylepis tarapacana, the world's highest elevation tree species.
    Rodriguez-Caton M; Andreu-Hayles L; Morales MS; Daux V; Christie DA; Coopman RE; Alvarez C; Rao MP; Aliste D; Flores F; Villalba R
    Tree Physiol; 2021 Aug; 41(8):1353-1371. PubMed ID: 33601406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brief windows with more favorable atmospheric conditions explain patterns of Polylepis reticulata tree water use in a high-altitude Andean forest.
    Carabajo-Hidalgo A; Sabaté S; Crespo P; Asbjornsen H
    Tree Physiol; 2023 Dec; 43(12):2085-2097. PubMed ID: 37672256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal Shift in Climatic Limiting Factors on Tree Transpiration: Evidence from Sap Flow Observations at Alpine Treelines in Southeast Tibet.
    Liu X; Nie Y; Luo T; Yu J; Shen W; Zhang L
    Front Plant Sci; 2016; 7():1018. PubMed ID: 27468289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica.
    Häger A
    Rev Biol Trop; 2010 Dec; 58(4):1489-506. PubMed ID: 21247001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal climate for large trees at high elevations drives patterns of biomass in remote forests of Papua New Guinea.
    Venter M; Dwyer J; Dieleman W; Ramachandra A; Gillieson D; Laurance S; Cernusak LA; Beehler B; Jensen R; Bird MI
    Glob Chang Biol; 2017 Nov; 23(11):4873-4883. PubMed ID: 28560838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carbon charging of pines at the climatic treeline: a global comparison.
    Hoch G; Körner C
    Oecologia; 2003 Mar; 135(1):10-21. PubMed ID: 12647099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth variations of Dahurian larch plantations across northeast China: Understanding the effects of temperature and precipitation.
    Jia B; Sun H; Shugart HH; Xu Z; Zhang P; Zhou G
    J Environ Manage; 2021 Aug; 292():112739. PubMed ID: 34020307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in microclimate and hydrology in an unmanaged mountain forest catchment after insect-induced tree dieback.
    Kopáček J; Bače R; Hejzlar J; Kaňa J; Kučera T; Matějka K; Porcal P; Turek J
    Sci Total Environ; 2020 Jun; 720():137518. PubMed ID: 32143039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran.
    Noroozi J; Körner C
    Alp Bot; 2018; 128(1):1-11. PubMed ID: 29576762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Responses of Manglietia glauca growth to soil nutrients and climatic factors].
    Lu LH; He RM; Nong RH; Li ZG
    Ying Yong Sheng Tai Xue Bao; 2014 Apr; 25(4):961-6. PubMed ID: 25011286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New tree-level temperature response curves document sensitivity of tree growth to high temperatures across a US-wide climatic gradient.
    Gantois J
    Glob Chang Biol; 2022 Oct; 28(20):6002-6020. PubMed ID: 35733243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of maximum tree height and annual shoot growth of Smith fir at various elevations in the Sygera Mountains, southeastern Tibetan Plateau.
    Wang Y; Čufar K; Eckstein D; Liang E
    PLoS One; 2012; 7(3):e31725. PubMed ID: 22396738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tree Water Use Patterns as Influenced by Phenology in a Dry Forest of Southern Ecuador.
    Butz P; Hölscher D; Cueva E; Graefe S
    Front Plant Sci; 2018; 9():945. PubMed ID: 30034407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil respiration variation along an altitudinal gradient in the Italian Alps: Disentangling forest structure and temperature effects.
    Badraghi A; Ventura M; Polo A; Borruso L; Giammarchi F; Montagnani L
    PLoS One; 2021; 16(8):e0247893. PubMed ID: 34403412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns and determinants of soil CO
    Kaushal S; Rao KS; Uniyal PL; Baishya R
    Environ Monit Assess; 2023 Jun; 195(7):876. PubMed ID: 37351715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of freezing temperatures on early life stages of native trees of different elevational origin: implications for tree recruitment in seasonally dry mountain forests.
    Torres RC; Valfré-Giorello TA; Cingolani AM; Cáceres Y; Barberá I; Hensen I; Renison D
    Plant Biol (Stuttg); 2024 Jan; 26(1):63-73. PubMed ID: 37971789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.