These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 24847685)

  • 1. Fine-tuning interaction between aminoacyl-tRNA synthetase and tRNA for efficient synthesis of proteins containing unnatural amino acids.
    Wang N; Ju T; Niu W; Guo J
    ACS Synth Biol; 2015 Mar; 4(3):207-12. PubMed ID: 24847685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli.
    Lee BS; Kim S; Ko BJ; Yoo TH
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3016-3023. PubMed ID: 28212794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transferability of N-terminal mutations of pyrrolysyl-tRNA synthetase in one species to that in another species on unnatural amino acid incorporation efficiency.
    Williams TL; Iskandar DJ; Nödling AR; Tan Y; Luk LYP; Tsai YH
    Amino Acids; 2021 Jan; 53(1):89-96. PubMed ID: 33331978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Code Expansion in Mammalian Cells Through Quadruplet Codon Decoding.
    Chen Y; Gao T; He X; Niu W; Guo J
    Methods Mol Biol; 2023; 2676():181-190. PubMed ID: 37277633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli.
    Chatterjee A; Xiao H; Schultz PG
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14841-6. PubMed ID: 22927411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast.
    Stieglitz JT; Kehoe HP; Lei M; Van Deventer JA
    ACS Synth Biol; 2018 Sep; 7(9):2256-2269. PubMed ID: 30139255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chemical toolkit for proteins--an expanded genetic code.
    Xie J; Schultz PG
    Nat Rev Mol Cell Biol; 2006 Oct; 7(10):775-82. PubMed ID: 16926858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool.
    Wan W; Tharp JM; Liu WR
    Biochim Biophys Acta; 2014 Jun; 1844(6):1059-70. PubMed ID: 24631543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upgrading aminoacyl-tRNA synthetases for genetic code expansion.
    Vargas-Rodriguez O; Sevostyanova A; Söll D; Crnković A
    Curr Opin Chem Biol; 2018 Oct; 46():115-122. PubMed ID: 30059834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.
    Gan Q; Fan C
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3047-3052. PubMed ID: 27919800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An expanded genetic code with a functional quadruplet codon.
    Anderson JC; Wu N; Santoro SW; Lakshman V; King DS; Schultz PG
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7566-71. PubMed ID: 15138302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids.
    Pott M; Schmidt MJ; Summerer D
    ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reprogramming the amino-acid substrate specificity of orthogonal aminoacyl-tRNA synthetases to expand the genetic code of eukaryotic cells.
    Cropp TA; Anderson JC; Chin JW
    Nat Protoc; 2007; 2(10):2590-600. PubMed ID: 17948002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity.
    Santoro SW; Wang L; Herberich B; King DS; Schultz PG
    Nat Biotechnol; 2002 Oct; 20(10):1044-8. PubMed ID: 12244330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Evolution of the
    Schwark DG; Schmitt MA; Fisk JD
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency.
    Owens AE; Grasso KT; Ziegler CA; Fasan R
    Chembiochem; 2017 Jun; 18(12):1109-1116. PubMed ID: 28383180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. tRNA
    Tharp JM; Ehnbom A; Liu WR
    RNA Biol; 2018; 15(4-5):441-452. PubMed ID: 28837402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system.
    Chemla Y; Ozer E; Schlesinger O; Noireaux V; Alfonta L
    Biotechnol Bioeng; 2015 Aug; 112(8):1663-72. PubMed ID: 25753985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.