These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 24847785)
1. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses. Luo C; Li Y; Yang L; Wang X; Long J; Liu J Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785 [TBL] [Abstract][Full Text] [Related]
2. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes. Petters C; Thiel K; Dringen R Nanotoxicology; 2016; 10(3):332-42. PubMed ID: 26287375 [TBL] [Abstract][Full Text] [Related]
3. Investigating the toxic effects induced by iron oxide nanoparticles on neuroblastoma cell line: an integrative study combining cytotoxic, genotoxic and proteomic tools. Askri D; Cunin V; Béal D; Berthier S; Chovelon B; Arnaud J; Rachidi W; Sakly M; Amara S; Sève M; Lehmann SG Nanotoxicology; 2019 Oct; 13(8):1021-1040. PubMed ID: 31132913 [TBL] [Abstract][Full Text] [Related]
4. Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. Gaharwar US; Meena R; Rajamani P J Appl Toxicol; 2017 Oct; 37(10):1232-1244. PubMed ID: 28585739 [TBL] [Abstract][Full Text] [Related]
5. Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles. Geppert M; Hohnholt MC; Nürnberger S; Dringen R Acta Biomater; 2012 Oct; 8(10):3832-9. PubMed ID: 22750736 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and interfacing of biocompatible iron oxide nanoparticles through the ferroxidase activity of Helicobacter Pylori ferritin. Lee IL; Li PS; Yu WL; Shen HH Biofabrication; 2012 Dec; 4(4):045001. PubMed ID: 23013844 [TBL] [Abstract][Full Text] [Related]
7. Antioxidant Iron Oxide Nanoparticles: Their Biocompatibility and Bioactive Properties. Lee J; Lee JH; Lee SY; Park SA; Kim JH; Hwang D; Kim KA; Kim HS Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958885 [TBL] [Abstract][Full Text] [Related]
8. Exogenous H2S protects H9c2 cardiac cells against high glucose-induced injury and inflammation by inhibiting the activation of the NF-κB and IL-1β pathways. Xu W; Chen J; Lin J; Liu D; Mo L; Pan W; Feng J; Wu W; Zheng D Int J Mol Med; 2015 Jan; 35(1):177-86. PubMed ID: 25412187 [TBL] [Abstract][Full Text] [Related]
9. Investigating the toxic effects of iron oxide nanoparticles. Soenen SJ; De Cuyper M; De Smedt SC; Braeckmans K Methods Enzymol; 2012; 509():195-224. PubMed ID: 22568907 [TBL] [Abstract][Full Text] [Related]
10. The volatile oil of Nardostachyos Radix et Rhizoma inhibits the oxidative stress-induced cell injury via reactive oxygen species scavenging and Akt activation in H9c2 cardiomyocyte. Maiwulanjiang M; Chen J; Xin G; Gong AG; Miernisha A; Du CY; Lau KM; Lee PS; Chen J; Dong TT; Aisa HA; Tsim KW J Ethnopharmacol; 2014 Apr; 153(2):491-8. PubMed ID: 24632018 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: differential activation of stress and survival pathways. Branco AF; Sampaio SF; Wieckowski MR; Sardão VA; Oliveira PJ Int J Biochem Cell Biol; 2013 Nov; 45(11):2379-91. PubMed ID: 23958426 [TBL] [Abstract][Full Text] [Related]
12. Novel insights into the role of HSP90 in cytoprotection of H2S against chemical hypoxia-induced injury in H9c2 cardiac myocytes. Yang Z; Yang C; Xiao L; Liao X; Lan A; Wang X; Guo R; Chen P; Hu C; Feng J Int J Mol Med; 2011 Sep; 28(3):397-403. PubMed ID: 21519787 [TBL] [Abstract][Full Text] [Related]
13. Sodium Fluoride Induces Apoptosis in H9c2 Cardiomyocytes by Altering Mitochondrial Membrane Potential and Intracellular ROS Level. Yan X; Yang X; Hao X; Ren Q; Gao J; Wang Y; Chang N; Qiu Y; Song G Biol Trace Elem Res; 2015 Aug; 166(2):210-5. PubMed ID: 25707396 [TBL] [Abstract][Full Text] [Related]
14. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways. Kim E; Kim JM; Kim L; Choi SJ; Park IS; Han JY; Chu YC; Choi ES; Na K; Hong SS Int J Nanomedicine; 2016; 11():4595-4607. PubMed ID: 27695320 [TBL] [Abstract][Full Text] [Related]
15. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling. Joris F; Valdepérez D; Pelaz B; Wang T; Doak SH; Manshian BB; Soenen SJ; Parak WJ; De Smedt SC; Raemdonck K Acta Biomater; 2017 Jun; 55():204-213. PubMed ID: 28373085 [TBL] [Abstract][Full Text] [Related]
16. Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Hohnholt MC; Geppert M; Dringen R Acta Biomater; 2011 Nov; 7(11):3946-54. PubMed ID: 21763792 [TBL] [Abstract][Full Text] [Related]
17. Iron oxide nanoparticles induced cytotoxicity, oxidative stress, cell cycle arrest, and DNA damage in human umbilical vein endothelial cells. Siddiqui MA; Wahab R; Saquib Q; Ahmad J; Farshori NN; Al-Sheddi ES; Al-Oqail MM; Al-Massarani SM; Al-Khedhairy AA J Trace Elem Med Biol; 2023 Dec; 80():127302. PubMed ID: 37734210 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of iron oxide nanoparticles by cultured primary neurons. Petters C; Dringen R Neurochem Int; 2015 Feb; 81():1-9. PubMed ID: 25510641 [TBL] [Abstract][Full Text] [Related]
19. Protective effects of paeoniflorin on acrolein-induced apoptosis in H9c2 cardiomyocytes. Shao Q; Li J; Huang X; Zhou G Pak J Pharm Sci; 2020 Jul; 33(4):1585-1592. PubMed ID: 33583791 [TBL] [Abstract][Full Text] [Related]
20. Ghrelin protects H9c2 cells from hydrogen peroxide-induced apoptosis through NF-κB and mitochondria-mediated signaling. Zhang Q; Huang WD; Lv XY; Yang YM Eur J Pharmacol; 2011 Mar; 654(2):142-9. PubMed ID: 21194528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]