BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24847889)

  • 1. Synthesis, size and magnetic properties of controllable MnFe2O4 nanoparticles with versatile surface functionalities.
    Bateer B; Tian C; Qu Y; Du S; Yang Y; Ren Z; Pan K; Fu H
    Dalton Trans; 2014 Jul; 43(26):9885-91. PubMed ID: 24847889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi-Magnetic Core-Shell CoFe
    Nica V; Caro C; Páez-Muñoz JM; Leal MP; Garcia-Martin ML
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32397243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia.
    Menelaou M; Georgoula K; Simeonidis K; Dendrinou-Samara C
    Dalton Trans; 2014 Mar; 43(9):3626-36. PubMed ID: 24413465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.
    Ma Z; Zhao D; Chang Y; Xing S; Wu Y; Gao Y
    Dalton Trans; 2013 Oct; 42(39):14261-7. PubMed ID: 23945878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oleylamine as a beneficial agent for the synthesis of CoFe₂O₄ nanoparticles with potential biomedical uses.
    Georgiadou V; Kokotidou C; Le Droumaguet B; Carbonnier B; Choli-Papadopoulou T; Dendrinou-Samara C
    Dalton Trans; 2014 May; 43(17):6377-88. PubMed ID: 24604256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing the inversion degree of MnFe2O4 nanoparticles through synthesis to enhance magnetization: evaluation of their (1)H NMR relaxation and heating efficiency.
    Vamvakidis K; Katsikini M; Sakellari D; Paloura EC; Kalogirou O; Dendrinou-Samara C
    Dalton Trans; 2014 Sep; 43(33):12754-65. PubMed ID: 25014470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of hydrophobically modified water-soluble polymers for the dispersion of hydrophobic magnetic nanoparticles in aqueous media.
    Iatridi Z; Georgiadou V; Menelaou M; Dendrinou-Samara C; Bokias G
    Dalton Trans; 2014 Jun; 43(23):8633-43. PubMed ID: 24759871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of ZnFe2O4 nanoparticles with tunable magnetic and sensing properties.
    Guo P; Cui L; Wang Y; Lv M; Wang B; Zhao XS
    Langmuir; 2013 Jul; 29(28):8997-9003. PubMed ID: 23786379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of MnFe₂O₄ nanoparticles to impart intrinsic multiple fluorescence and novel photocatalytic properties.
    Pal M; Rakshit R; Mandal K
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4903-10. PubMed ID: 24621387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Rayleigh scattering spectra of ion-association nanoparticles of [Co(4-[(5-chloro-2-pyridyl) azo]-1, 3-diaminobenzene)2]2+-sodium dodecyl benzene sulfonate system and its analytical application.
    Yang Q; Lu Q; Liu Z; Liu S; Chen G; Duan H; Song D; Wang J; Liu J
    Anal Chim Acta; 2009 Jan; 632(1):115-21. PubMed ID: 19100890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating.
    Barhoum A; Rahier H; Abou-Zaied RE; Rehan M; Dufour T; Hill G; Dufresne A
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2734-44. PubMed ID: 24456100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Nanoparticles of Citrate-Coated Manganese Ferrite and Gold Nanorods in Magneto-Optical Imaging and Thermal Therapy.
    Arsalani S; Arsalani S; Isikawa M; Guidelli EJ; Mazon EE; Ramos AP; Bakuzis A; Pavan TZ; Baffa O; Carneiro AAO
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese Ferrite Nanoparticles (MnFe
    Islam K; Haque M; Kumar A; Hoq A; Hyder F; Hoque SM
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33233590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles.
    Hu J; Lo IM; Chen G
    Langmuir; 2005 Nov; 21(24):11173-9. PubMed ID: 16285787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seeded growth of ferrite nanoparticles from Mn oxides: observation of anomalies in magnetic transitions.
    Song HM; Zink JI; Khashab NM
    Phys Chem Chem Phys; 2015 Jul; 17(28):18825-33. PubMed ID: 26123580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters.
    Vamvakidis K; Mourdikoudis S; Makridis A; Paulidou E; Angelakeris M; Dendrinou-Samara C
    J Colloid Interface Sci; 2018 Feb; 511():101-109. PubMed ID: 28992447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents.
    Kainz QM; Reiser O
    Acc Chem Res; 2014 Feb; 47(2):667-77. PubMed ID: 24397296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Process Variables on Properties of CoFe
    Duong HDT; Nguyen DT; Kim KS
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability evolution of ultrafine Ag nanoparticles prepared by laser ablation in liquids.
    Chen Q; Ye Y; Liu J; Wu S; Li P; Liang C
    J Colloid Interface Sci; 2021 Mar; 585():444-451. PubMed ID: 33097224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of sulfur nanoparticles in aqueous surfactant solutions.
    Chaudhuri RG; Paria S
    J Colloid Interface Sci; 2010 Mar; 343(2):439-46. PubMed ID: 20038467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.