These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 24848016)
1. PASTA 2.0: an improved server for protein aggregation prediction. Walsh I; Seno F; Tosatto SC; Trovato A Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W301-7. PubMed ID: 24848016 [TBL] [Abstract][Full Text] [Related]
2. The PASTA server for protein aggregation prediction. Trovato A; Seno F; Tosatto SC Protein Eng Des Sel; 2007 Oct; 20(10):521-3. PubMed ID: 17720750 [TBL] [Abstract][Full Text] [Related]
3. SODA: prediction of protein solubility from disorder and aggregation propensity. Paladin L; Piovesan D; Tosatto SCE Nucleic Acids Res; 2017 Jul; 45(W1):W236-W240. PubMed ID: 28505312 [TBL] [Abstract][Full Text] [Related]
4. CORDAX web server: an online platform for the prediction and 3D visualization of aggregation motifs in protein sequences. Louros N; Rousseau F; Schymkowitz J Bioinformatics; 2024 May; 40(5):. PubMed ID: 38662570 [TBL] [Abstract][Full Text] [Related]
5. Formation of Heterotypic Amyloids: α-Synuclein in Co-Aggregation. Bhasne K; Mukhopadhyay S Proteomics; 2018 Nov; 18(21-22):e1800059. PubMed ID: 30216674 [TBL] [Abstract][Full Text] [Related]
6. Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines. Vullo A; Bortolami O; Pollastri G; Tosatto SC Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W164-8. PubMed ID: 16844983 [TBL] [Abstract][Full Text] [Related]
7. NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Kim C; Choi J; Lee SJ; Welsh WJ; Yoon S Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W469-73. PubMed ID: 19468045 [TBL] [Abstract][Full Text] [Related]
8. FuzDrop on AlphaFold: visualizing the sequence-dependent propensity of liquid-liquid phase separation and aggregation of proteins. Hatos A; Tosatto SCE; Vendruscolo M; Fuxreiter M Nucleic Acids Res; 2022 Jul; 50(W1):W337-W344. PubMed ID: 35610022 [TBL] [Abstract][Full Text] [Related]
9. Intrinsically disordered proteins in the formation of functional amyloids from bacteria to humans. Avni A; Swasthi HM; Majumdar A; Mukhopadhyay S Prog Mol Biol Transl Sci; 2019; 166():109-143. PubMed ID: 31521230 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Amyloid Forming Tendency of Peptide Sequences from Amyloid Beta and Tau Proteins Using Force-Field, Semi-Empirical, and Density Functional Theory Calculations. Muvva C; Murugan NA; Subramanian V Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33806726 [TBL] [Abstract][Full Text] [Related]
11. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Zambrano R; Jamroz M; Szczasiuk A; Pujols J; Kmiecik S; Ventura S Nucleic Acids Res; 2015 Jul; 43(W1):W306-13. PubMed ID: 25883144 [TBL] [Abstract][Full Text] [Related]
12. Modulation of the aggregation of an amyloidogenic sequence by flanking-disordered region in the intrinsically disordered antigen merozoite surface protein 2. Zhang W; Zhang J; MacRaild CA; Norton RS; Anders RF; Zhang X Eur Biophys J; 2019 Jan; 48(1):99-110. PubMed ID: 30443712 [TBL] [Abstract][Full Text] [Related]
13. ANuPP: A Versatile Tool to Predict Aggregation Nucleating Regions in Peptides and Proteins. Prabakaran R; Rawat P; Kumar S; Michael Gromiha M J Mol Biol; 2021 May; 433(11):166707. PubMed ID: 33972019 [TBL] [Abstract][Full Text] [Related]
14. Protein aggregation and amyloid fibril formation prediction software from primary sequence: towards controlling the formation of bacterial inclusion bodies. Hamodrakas SJ FEBS J; 2011 Jul; 278(14):2428-35. PubMed ID: 21569208 [TBL] [Abstract][Full Text] [Related]
15. Role of Tyr-39 for the Structural Features of α-Synuclein and for the Interaction with a Strong Modulator of Its Amyloid Assembly. Palomino-Hernandez O; Buratti FA; Sacco PS; Rossetti G; Carloni P; Fernandez CO Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32709107 [TBL] [Abstract][Full Text] [Related]
16. GAP: towards almost 100 percent prediction for β-strand-mediated aggregating peptides with distinct morphologies. Thangakani AM; Kumar S; Nagarajan R; Velmurugan D; Gromiha MM Bioinformatics; 2014 Jul; 30(14):1983-90. PubMed ID: 24681906 [TBL] [Abstract][Full Text] [Related]
17. TAPASS: Tool for annotation of protein amyloidogenicity in the context of other structural states. Falgarone T; Villain É; Guettaf A; Leclercq J; Kajava AV J Struct Biol; 2022 Mar; 214(1):107840. PubMed ID: 35149212 [TBL] [Abstract][Full Text] [Related]
18. Usage of a dataset of NMR resolved protein structures to test aggregation versus solubility prediction algorithms. Roche DB; Villain E; Kajava AV Protein Sci; 2017 Sep; 26(9):1864-1869. PubMed ID: 28685932 [TBL] [Abstract][Full Text] [Related]
19. Exploring Protein Intrinsic Disorder with MobiDB. Monzon AM; Hatos A; Necci M; Piovesan D; Tosatto SCE Methods Mol Biol; 2020; 2141():127-143. PubMed ID: 32696355 [TBL] [Abstract][Full Text] [Related]
20. Can molecular dynamics simulations assist in design of specific inhibitors and imaging agents of amyloid aggregation? Structure, stability and free energy predictions for amyloid oligomers of VQIVYK, MVGGVV and LYQLEN. Berhanu WM; Masunov AE J Mol Model; 2011 Oct; 17(10):2423-42. PubMed ID: 21174134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]