These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 24848133)

  • 1. The renal microcirculation in sepsis.
    Ergin B; Kapucu A; Demirci-Tansel C; Ince C
    Nephrol Dial Transplant; 2015 Feb; 30(2):169-77. PubMed ID: 24848133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pathogenesis of acute kidney injury and the toxic triangle of oxygen, reactive oxygen species and nitric oxide.
    Aksu U; Demirci C; Ince C
    Contrib Nephrol; 2011; 174():119-128. PubMed ID: 21921616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The macro- and microcirculation of the kidney.
    Guerci P; Ergin B; Ince C
    Best Pract Res Clin Anaesthesiol; 2017 Sep; 31(3):315-329. PubMed ID: 29248139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal Medullary Hypoxia: A New Therapeutic Target for Septic Acute Kidney Injury?
    Lankadeva YR; Okazaki N; Evans RG; Bellomo R; May CN
    Semin Nephrol; 2019 Nov; 39(6):543-553. PubMed ID: 31836037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal perfusion in sepsis: from macro- to microcirculation.
    Post EH; Kellum JA; Bellomo R; Vincent JL
    Kidney Int; 2017 Jan; 91(1):45-60. PubMed ID: 27692561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation.
    Prowle JR; Bellomo R
    Semin Nephrol; 2015 Jan; 35(1):64-74. PubMed ID: 25795500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The microcirculation of the septic kidney.
    Zafrani L; Payen D; Azoulay E; Ince C
    Semin Nephrol; 2015 Jan; 35(1):75-84. PubMed ID: 25795501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiology of sepsis-induced acute kidney injury: the role of global renal blood flow and renal vascular resistance.
    Bouglé A; Duranteau J
    Contrib Nephrol; 2011; 174():89-97. PubMed ID: 21921613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology.
    Evans RG; Ince C; Joles JA; Smith DW; May CN; O'Connor PM; Gardiner BS
    Clin Exp Pharmacol Physiol; 2013 Feb; 40(2):106-22. PubMed ID: 23167537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute Kidney Injury and Fluid Resuscitation in Septic Patients: Are We Protecting the Kidney?
    Montomoli J; Donati A; Ince C
    Nephron; 2019; 143(3):170-173. PubMed ID: 31394531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury.
    Ince C
    Nephron Clin Pract; 2014; 127(1-4):124-8. PubMed ID: 25343835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sepsis-Associated Acute Kidney Injury.
    Manrique-Caballero CL; Del Rio-Pertuz G; Gomez H
    Crit Care Clin; 2021 Apr; 37(2):279-301. PubMed ID: 33752856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching for mechanisms that matter in early septic acute kidney injury: an experimental study.
    Benes J; Chvojka J; Sykora R; Radej J; Krouzecky A; Novak I; Matejovic M
    Crit Care; 2011; 15(5):R256. PubMed ID: 22030145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal Oxygenation and Hemodynamics in Kidney Injury.
    Bullen A; Liu ZZ; Hepokoski M; Li Y; Singh P
    Nephron; 2017; 137(4):260-263. PubMed ID: 28614837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the microcirculation in acute kidney injury.
    Le Dorze M; Legrand M; Payen D; Ince C
    Curr Opin Crit Care; 2009 Dec; 15(6):503-8. PubMed ID: 19829106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomic nervous system in acute kidney injury.
    Hering D; Winklewski PJ
    Clin Exp Pharmacol Physiol; 2017 Feb; 44(2):162-171. PubMed ID: 28116780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive measurement of renal perfusion and oxygen metabolism to predict postoperative acute kidney injury in neonates and infants after cardiopulmonary bypass surgery.
    Neunhoeffer F; Wiest M; Sandner K; Renk H; Heimberg E; Haller C; Kumpf M; Schlensak C; Hofbeck M
    Br J Anaesth; 2016 Nov; 117(5):623-634. PubMed ID: 27799177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury.
    Gomez H; Ince C; De Backer D; Pickkers P; Payen D; Hotchkiss J; Kellum JA
    Shock; 2014 Jan; 41(1):3-11. PubMed ID: 24346647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular differences in susceptibility of the kidney to sepsis-induced kidney injury.
    Matejovic M; Valesova L; Benes J; Sykora R; Hrstka R; Chvojka J
    BMC Nephrol; 2017 May; 18(1):183. PubMed ID: 28569136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sepsis-induced acute kidney injury: A disease of the microcirculation.
    Ma S; Evans RG; Iguchi N; Tare M; Parkington HC; Bellomo R; May CN; Lankadeva YR
    Microcirculation; 2019 Feb; 26(2):e12483. PubMed ID: 29908046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.