These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Expansion of CD11b(+)Ly6G (+)Ly6C (int) cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions. Spallanzani RG; Dalotto-Moreno T; Raffo Iraolagoitia XL; Ziblat A; Domaica CI; Avila DE; Rossi LE; Fuertes MB; Battistone MA; Rabinovich GA; Salatino M; Zwirner NW Cancer Immunol Immunother; 2013 Dec; 62(12):1781-95. PubMed ID: 24114144 [TBL] [Abstract][Full Text] [Related]
23. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. Noman MZ; Desantis G; Janji B; Hasmim M; Karray S; Dessen P; Bronte V; Chouaib S J Exp Med; 2014 May; 211(5):781-90. PubMed ID: 24778419 [TBL] [Abstract][Full Text] [Related]
24. Simultaneous inhibition of CXCR1/2, TGF-β, and PD-L1 remodels the tumor and its microenvironment to drive antitumor immunity. Horn LA; Riskin J; Hempel HA; Fousek K; Lind H; Hamilton DH; McCampbell KK; Maeda DY; Zebala JA; Su Z; Schlom J; Palena C J Immunother Cancer; 2020 Mar; 8(1):. PubMed ID: 32188703 [TBL] [Abstract][Full Text] [Related]
25. Microsomal prostaglandin E synthase-1 promotes lung metastasis via SDF-1/CXCR4-mediated recruitment of CD11b Takahashi R; Amano H; Ito Y; Eshima K; Satoh T; Iwamura M; Nakamura M; Kitasato H; Uematsu S; Raouf J; Jakobsson PJ; Akira S; Majima M Biomed Pharmacother; 2020 Jan; 121():109581. PubMed ID: 31715374 [TBL] [Abstract][Full Text] [Related]
26. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Lu X; Horner JW; Paul E; Shang X; Troncoso P; Deng P; Jiang S; Chang Q; Spring DJ; Sharma P; Zebala JA; Maeda DY; Wang YA; DePinho RA Nature; 2017 Mar; 543(7647):728-732. PubMed ID: 28321130 [TBL] [Abstract][Full Text] [Related]
27. Tumor-induced myeloid-derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct CD8+ T-cell activation events. Schouppe E; Mommer C; Movahedi K; Laoui D; Morias Y; Gysemans C; Luyckx A; De Baetselier P; Van Ginderachter JA Eur J Immunol; 2013 Nov; 43(11):2930-42. PubMed ID: 23878002 [TBL] [Abstract][Full Text] [Related]
28. Multimodal Intralesional Therapy for Reshaping the Myeloid Compartment of Tumors Resistant to Anti-PD-L1 Therapy via IRF8 Expression. Patel A; Oba T; Kajihara R; Yokoi T; Abrams SI; Ito F J Immunol; 2021 Sep; 207(5):1298-1309. PubMed ID: 34362833 [TBL] [Abstract][Full Text] [Related]
29. Combination of Sunitinib and PD-L1 Blockade Enhances Anticancer Efficacy of TLR7/8 Agonist-Based Nanovaccine. Kim H; Khanna V; Kucaba TA; Zhang W; Ferguson DM; Griffith TS; Panyam J Mol Pharm; 2019 Mar; 16(3):1200-1210. PubMed ID: 30620878 [TBL] [Abstract][Full Text] [Related]
30. The Combination of MEK Inhibitor With Immunomodulatory Antibodies Targeting Programmed Death 1 and Programmed Death Ligand 1 Results in Prolonged Survival in Kras/p53-Driven Lung Cancer. Lee JW; Zhang Y; Eoh KJ; Sharma R; Sanmamed MF; Wu J; Choi J; Park HS; Iwasaki A; Kaftan E; Chen L; Papadimitrakopoulou V; Herbst RS; Koo JS J Thorac Oncol; 2019 Jun; 14(6):1046-1060. PubMed ID: 30771521 [TBL] [Abstract][Full Text] [Related]
31. Concomitant NAFLD Facilitates Liver Metastases and PD-1-Refractory by Recruiting MDSCs via CXCL5/CXCR2 in Colorectal Cancer. Yang Y; Chen Y; Liu Z; Chang Z; Sun Z; Zhao L Cell Mol Gastroenterol Hepatol; 2024; 18(2):101351. PubMed ID: 38724007 [TBL] [Abstract][Full Text] [Related]
32. Receptor-Interacting Protein Kinase 3 Deficiency Recruits Myeloid-Derived Suppressor Cells to Hepatocellular Carcinoma Through the Chemokine (C-X-C Motif) Ligand 1-Chemokine (C-X-C Motif) Receptor 2 Axis. Li YM; Liu ZY; Wang JC; Yu JM; Li ZC; Yang HJ; Tang J; Chen ZN Hepatology; 2019 Nov; 70(5):1564-1581. PubMed ID: 31021443 [TBL] [Abstract][Full Text] [Related]
33. Synergistic antitumor activity by dual blockade of CCR1 and CXCR2 expressed on myeloid cells within the tumor microenvironment. Masui H; Kawada K; Itatani Y; Hirai H; Nakanishi Y; Kiyasu Y; Hanada K; Okamoto M; Hirata W; Nishikawa Y; Sugimoto N; Tamura T; Sakai Y; Obama K Br J Cancer; 2024 Jul; 131(1):63-76. PubMed ID: 38750114 [TBL] [Abstract][Full Text] [Related]
34. CXCR2 Zhu H; Gu Y; Xue Y; Yuan M; Cao X; Liu Q Oncotarget; 2017 Dec; 8(70):114554-114567. PubMed ID: 29383101 [TBL] [Abstract][Full Text] [Related]
35. CD205 Fu C; Fu Z; Jiang C; Xia C; Zhang Y; Gu X; Zheng K; Zhou D; Tang S; Lyu S; Ma S Cancer Sci; 2021 Mar; 112(3):1011-1025. PubMed ID: 33368883 [TBL] [Abstract][Full Text] [Related]
36. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy. Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C Front Immunol; 2021; 12():754196. PubMed ID: 35003065 [TBL] [Abstract][Full Text] [Related]
37. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Adeshakin AO; Liu W; Adeshakin FO; Afolabi LO; Zhang M; Zhang G; Wang L; Li Z; Lin L; Cao Q; Yan D; Wan X Cell Immunol; 2021 Apr; 362():104286. PubMed ID: 33524739 [TBL] [Abstract][Full Text] [Related]
38. Double-stranded RNA promotes CTL-independent tumor cytolysis mediated by CD11b Shime H; Matsumoto M; Seya T Cell Death Differ; 2017 Mar; 24(3):385-396. PubMed ID: 27834952 [TBL] [Abstract][Full Text] [Related]
39. The Cxcr2 Kao KD; Grasberger H; El-Zaatari M Front Immunol; 2023; 14():1147695. PubMed ID: 37744359 [TBL] [Abstract][Full Text] [Related]
40. Age-related expansion and increased osteoclastogenic potential of myeloid-derived suppressor cells. Li Z; Zhao Y; Chen Z; Katz J; Michalek SM; Li Y; Zhang P Mol Immunol; 2021 Sep; 137():187-200. PubMed ID: 34274794 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]