These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24848297)

  • 1. High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries.
    Kim IT; Allcorn E; Manthiram A
    Phys Chem Chem Phys; 2014 Jul; 16(25):12884-9. PubMed ID: 24848297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sb/Cu2Sb-TiC-C Composite Anode for High-Performance Sodium-Ion Batteries.
    Chae SC; Hur J; Kim IT
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1890-3. PubMed ID: 27433694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FeSb₂-Al₂O₃-C nanocomposite anodes for lithium-ion batteries.
    Allcorn E; Manthiram A
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10886-91. PubMed ID: 24661574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
    Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C
    Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Zn-TiC-C Nanocomposite Alloy Anode with Exceptional Cycle Life for Lithium-Ion Batteries.
    Kim SO; Manthiram A
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14801-7. PubMed ID: 26098753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
    Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y
    ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT.
    Allcorn E; Kim SO; Manthiram A
    Phys Chem Chem Phys; 2015 Nov; 17(43):28837-43. PubMed ID: 26451397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Cycle Stability of Zinc Sulfide Anode for High-Performance Lithium-Ion Storage: Effect of Conductive Hybrid Matrix on Active ZnS.
    Nguyen QH; Park T; Hur J
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Performance of FeSb₂-P@C Composites as Anode Materials for Lithium-Ion Storage.
    Mun YS; Kim D; Kim IT
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1343-1346. PubMed ID: 29448588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GeTe-TiC-C Composite Anodes for Li-Ion Storage.
    Kim WS; Vo TN; Kim IT
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32977464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microsized Antimony as a Stable Anode in Fluoroethylene Carbonate Containing Electrolytes for Rechargeable Lithium-/Sodium-Ion Batteries.
    Bian X; Dong Y; Zhao D; Ma X; Qiu M; Xu J; Jiao L; Cheng F; Zhang N
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3554-3562. PubMed ID: 31886641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performing mesoporous iron oxalate anodes for lithium-ion batteries.
    Ang WA; Gupta N; Prasanth R; Madhavi S
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7011-9. PubMed ID: 23163539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of the Cycle Life and Rate Capability of LIB Silicon Anodes Based on Macroporous Membranes.
    Li G; Rumyantsev A; Astrova E; Maximov M
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries.
    Ji L; Zhou W; Chabot V; Yu A; Xiao X
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24895-901. PubMed ID: 26496231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun Cu/Sn/C nanocomposite fiber anodes with superior usable lifetime for lithium- and sodium-ion batteries.
    Kim JC; Kim DW
    Chem Asian J; 2014 Nov; 9(11):3313-8. PubMed ID: 25225075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the Solid Electrolyte Interface on the Si/C Composite Anode with FEC as the Additive.
    Li Q; Liu X; Han X; Xiang Y; Zhong G; Wang J; Zheng B; Zhou J; Yang Y
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14066-14075. PubMed ID: 30801174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Cells Containing Lithium Metal Anodes, LiNi
    Salitra G; Markevich E; Afri M; Talyosef Y; Hartmann P; Kulisch J; Sun YK; Aurbach D
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19773-19782. PubMed ID: 29787244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
    Edison E; Sreejith S; Madhavi S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39399-39406. PubMed ID: 29090906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Carbon-Doped Mo(Se0.85 S0.15 )2 Hierarchical Nanotubes as Stable Anodes for High-Performance Sodium-Ion Batteries.
    Shi ZT; Kang W; Xu J; Sun LL; Wu C; Wang L; Yu YQ; Yu DY; Zhang W; Lee CS
    Small; 2015 Nov; 11(42):5667-74. PubMed ID: 26350033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of the Carbon-Coated Nanoparticle Co
    Liu X; Liu H; Zhao Y; Dong Y; Fan Q; Kuang Q
    Langmuir; 2016 Dec; 32(48):12593-12602. PubMed ID: 27792879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.