These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 24848303)

  • 1. Effect of diameter variation on electrical characteristics of Schottky barrier indium arsenide nanowire field-effect transistors.
    Razavieh A; Mohseni PK; Jung K; Mehrotra S; Das S; Suslov S; Li X; Klimeck G; Janes DB; Appenzeller J
    ACS Nano; 2014 Jun; 8(6):6281-7. PubMed ID: 24848303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal/nanowire contacts, quantum confinement, and their roles in the generation of new, gigantic actions in nanowire transistors.
    Mohammad SN
    Nanotechnology; 2013 Nov; 24(45):455201. PubMed ID: 24129340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependences of the electrical properties on the diameter and the doping concentration of the Si nanowire field effect transistors with a Schottky metal-semiconductor contact.
    You JH; Lee SH; You CH; Yu YS; Kim TW
    J Nanosci Nanotechnol; 2010 May; 10(5):3609-13. PubMed ID: 20359010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channel Length-Dependent Operation of Ambipolar Schottky-Barrier Transistors on a Single Si Nanowire.
    Park SJ; Jeon DY; Sessi V; Trommer J; Heinzig A; Mikolajick T; Kim GT; Weber WM
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43927-43932. PubMed ID: 32880433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient.
    Barreda JL; Keiper TD; Zhang M; Xiong P
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):12046-12053. PubMed ID: 28274114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications.
    Nozaki D; Kunstmann J; Zörgiebel F; Weber WM; Mikolajick T; Cuniberti G
    Nanotechnology; 2011 Aug; 22(32):325703. PubMed ID: 21772070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen plasma exposure effects on indium oxide nanowire transistors.
    Kim S; Delker C; Chen P; Zhou C; Ju S; Janes DB
    Nanotechnology; 2010 Apr; 21(14):145207. PubMed ID: 20234086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS
    Kim GS; Kim SH; Park J; Han KH; Kim J; Yu HY
    ACS Nano; 2018 Jun; 12(6):6292-6300. PubMed ID: 29851473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High performance horizontal gate-all-around silicon nanowire field-effect transistors.
    Shirak O; Shtempluck O; Kotchtakov V; Bahir G; Yaish YE
    Nanotechnology; 2012 Oct; 23(39):395202. PubMed ID: 22971804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of Schottky and Ohmic Au Nanocatalysts to ZnO Nanowires.
    Lord AM; Ramasse QM; Kepaptsoglou DM; Periwal P; Ross FM; Wilks SP
    Nano Lett; 2017 Nov; 17(11):6626-6636. PubMed ID: 29024594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors.
    Martin D; Heinzig A; Grube M; Geelhaar L; Mikolajick T; Riechert H; Weber WM
    Phys Rev Lett; 2011 Nov; 107(21):216807. PubMed ID: 22181912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors.
    Fan ZQ; Jiang XW; Chen J; Luo JW
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19271-19277. PubMed ID: 29737827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current transport mechanism in a metal-GaN nanowire Schottky diode.
    Lee SY; Lee SK
    Nanotechnology; 2007 Dec; 18(49):495701. PubMed ID: 20442482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling.
    Du Y; Liu H; Deng Y; Ye PD
    ACS Nano; 2014 Oct; 8(10):10035-42. PubMed ID: 25314022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical characteristics of multilayer MoS2 FET's with MoS2/graphene heterojunction contacts.
    Kwak JY; Hwang J; Calderon B; Alsalman H; Munoz N; Schutter B; Spencer MG
    Nano Lett; 2014 Aug; 14(8):4511-6. PubMed ID: 24978093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Important Is the Metal-Semiconductor Contact for Schottky Barrier Transistors: A Case Study on Few-Layer Black Phosphorus?
    Yang L; Charnas A; Qiu G; Lin YM; Lu CC; Tsai W; Paduano Q; Snure M; Ye PD
    ACS Omega; 2017 Aug; 2(8):4173-4179. PubMed ID: 31457714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic transport mechanism and photocurrent generations of single-crystalline InN nanowires.
    Lee S; Lee W; Seo K; Kim J; Han SH; Kim B
    Nanotechnology; 2008 Oct; 19(41):415202. PubMed ID: 21832639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures.
    Wu Y; Xiang J; Yang C; Lu W; Lieber CM
    Nature; 2004 Jul; 430(6995):61-5. PubMed ID: 15229596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimode silicon nanowire transistors.
    Glassner S; Zeiner C; Periwal P; Baron T; Bertagnolli E; Lugstein A
    Nano Lett; 2014 Nov; 14(11):6699-703. PubMed ID: 25303290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Triode Device with a Gate Controllable Schottky Barrier: Germanium Nanowire Transistors and Their Applications.
    Lin CY; Chen CF; Chang YM; Yang SH; Lee KC; Wu WW; Jian WB; Lin YF
    Small; 2019 Aug; 15(33):e1900865. PubMed ID: 31264786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.