These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2484861)

  • 21. Oscillatory bursts in the optic tectum of birds represent re-entrant signals from the nucleus isthmi pars parvocellularis.
    Marín G; Mpodozis J; Sentis E; Ossandón T; Letelier JC
    J Neurosci; 2005 Jul; 25(30):7081-9. PubMed ID: 16049185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Receptive field properties of single cells in the pigeon's optic tectum during cooling of the 'visual wulst'.
    Leresche N; Hardy O; Jassik-Gerschenfeld D
    Brain Res; 1983 May; 267(2):225-36. PubMed ID: 6307466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The spatial frequency limits and the resolving power of the visual system of the pigeon].
    Pak MA; Cleveland SJ
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1991 Dec; 22(4):194-9. PubMed ID: 1786779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visually triggered neuronal oscillations in the pigeon: an autocorrelation study of tectal activity.
    Neuenschwander S; Varela FJ
    Eur J Neurosci; 1993 Jul; 5(7):870-81. PubMed ID: 8281299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrical phenomena in the telencephalon of the pigeon during pecking.
    Boiko VP; Bureś J
    Neurosci Behav Physiol; 1985; 15(3):265-70. PubMed ID: 4033923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Selectivity to spatial frequencies in the pigeon's optic tectum cells].
    Hardy O; Jassik-Gerschenfeld D
    C R Acad Hebd Seances Acad Sci D; 1978 May; 286(18):1297-9. PubMed ID: 96989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for physiological asymmetries in the intertectal connections of the pigeon (Columba livia) and their potential role in brain lateralisation.
    Keysers C; Diekamp B; Güntürkün B
    Brain Res; 2000 Jan; 852(2):406-13. PubMed ID: 10678768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Depletion and recovery of the calcium-binding proteins calbindin and parvalbumin in the pigeon optic tectum following retinal lesions.
    Britto LR; Gobersztejn F; Karten HJ; Cox K
    Brain Res; 1994 Oct; 661(1-2):289-92. PubMed ID: 7834380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparisons of visual properties between tectal and thalamic neurons with overlapping receptive fields in the pigeon.
    Yang J; Zhang C; Wang SR
    Brain Behav Evol; 2005; 65(1):33-9. PubMed ID: 15489563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinal afferents to the pigeon optic tectum: discharge characteristics in response to whole field illumination.
    Duff TA; Cohen DH
    Brain Res; 1975 Jul; 92(1):1-19. PubMed ID: 1174936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential effects of d-fenfluramine and p-chloroamphetamine on H75/12-induced depletion of 5-hydroxytryptamine and dopamine in the rat brain.
    Fattaccini CM; Gozlan H; Hamon M
    Neuropharmacology; 1991 Jan; 30(1):15-23. PubMed ID: 1710793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamatergic neurotransmission from the optic tectum to the contralateral nucleus rotundus in pigeons.
    Huang LH; Li JL; Wang SR
    Brain Behav Evol; 1998; 52(1):55-60. PubMed ID: 9667809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circadian regulation of visually evoked potentials in the domestic pigeon, Columba livia.
    Wu WQ; McGoogan JM; Cassone VM
    J Biol Rhythms; 2000 Aug; 15(4):317-28. PubMed ID: 10942263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of p-chlorophenylalanine at moderate dosage on 5-HT and 5-HIAA concentrations in brain regions of control and p-chloroamphetamine treated rats.
    Datla KP; Curzon G
    Neuropharmacology; 1996 Mar; 35(3):315-20. PubMed ID: 8783206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnocellular and parvocellular divisions of pigeon nucleus isthmi differentially modulate visual responses in the tectum.
    Wang SR; Wang YC; Frost BJ
    Exp Brain Res; 1995; 104(3):376-84. PubMed ID: 7589290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [3H]paroxetine binding and serotonin content of rat cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum, and midbrain raphe nuclei region following p-chlorophenylalanine and p-chloroamphetamine treatment.
    Dewar KM; Grondin L; Carli M; Lima L; Reader TA
    J Neurochem; 1992 Jan; 58(1):250-7. PubMed ID: 1370077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field potentials evoked in the avian optic tectum by diffuse and punctiform luminous stimuli.
    Holden AL
    Exp Brain Res; 1980; 39(4):427-32. PubMed ID: 7398835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The relation of flash intensity and background illumination to the photic evoked potential in the pigeon's optic tectum.
    Samson HH; Young ML
    Vision Res; 1973 Feb; 13(2):253-62. PubMed ID: 4692519
    [No Abstract]   [Full Text] [Related]  

  • 39. Morphological and functional changes in the retinotectal system of the pigeon during the early posthatching period.
    Bagnoli P; Porciatti V; Fontanesi G; Sebastiani L
    J Comp Neurol; 1987 Feb; 256(3):400-11. PubMed ID: 3571513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural image reconstruction on the basis of local field potential signals of pigeon optic tectum neurons.
    Wang Z; Jiao X; Wang S; Niu X; Shi L
    Neuroreport; 2018 Sep; 29(13):1092-1098. PubMed ID: 29912849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.