These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24848750)

  • 1. Enhanced thermoelectric efficiency in ferromagnetic silicene nanoribbons terminated with hydrogen atoms.
    Zberecki K; Swirkowicz R; Wierzbicki M; Barnaś J
    Phys Chem Chem Phys; 2014 Jul; 16(25):12900-8. PubMed ID: 24848750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin effects in thermoelectric phenomena in SiC nanoribbons.
    Zberecki K; Swirkowicz R; Wierzbicki M; Barnaś J
    Phys Chem Chem Phys; 2015 Jan; 17(3):1925-33. PubMed ID: 25473937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zigzag nanoribbons of two-dimensional silicene-like crystals: magnetic, topological and thermoelectric properties.
    Wierzbicki M; Barnaś J; Swirkowicz R
    J Phys Condens Matter; 2015 Dec; 27(48):485301. PubMed ID: 26565114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectacular enhancement of thermoelectric phenomena in chemically synthesized graphene nanoribbons with substitution atoms.
    Zberecki K; Swirkowicz R; Wierzbicki M; Barnaś J
    Phys Chem Chem Phys; 2016 Jul; 18(27):18246-54. PubMed ID: 27331357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic Structures of Silicene Nanoribbons: Two-Edge-Chemistry Modification and First-Principles Study.
    Yao Y; Liu A; Bai J; Zhang X; Wang R
    Nanoscale Res Lett; 2016 Dec; 11(1):371. PubMed ID: 27550051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boron nitride zigzag nanoribbons: optimal thermoelectric systems.
    Zberecki K; Swirkowicz R; Barnaś J
    Phys Chem Chem Phys; 2015 Sep; 17(34):22448-54. PubMed ID: 26250512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin thermoelectric properties induced by hydrogen impurities in zigzag graphene nanoribbons.
    Esteki S; Farghadan R
    Phys Chem Chem Phys; 2024 Apr; 26(15):12035-12043. PubMed ID: 38576407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Largely enhanced thermoelectric effect and pure spin current in silicene-based devices under hydrogen modification.
    Qiao Q; Tan FX; Yang LY; Yang XF; Liu YS
    Nanoscale; 2020 Jan; 12(1):277-288. PubMed ID: 31825044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoelectric properties of armchair and zigzag silicene nanoribbons.
    Pan L; Liu HJ; Tan XJ; Lv HY; Shi J; Tang XF; Zheng G
    Phys Chem Chem Phys; 2012 Oct; 14(39):13588-93. PubMed ID: 22965156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate.
    Cabrera-Sanfelix P; Arnau A; Sánchez-Portal D
    Phys Chem Chem Phys; 2013 Mar; 15(9):3233-42. PubMed ID: 23344647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study.
    Liang Y; Wang V; Mizuseki H; Kawazoe Y
    J Phys Condens Matter; 2012 Nov; 24(45):455302. PubMed ID: 23085744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WSe2 nanoribbons: new high-performance thermoelectric materials.
    Chen KX; Luo ZY; Mo DC; Lyu SS
    Phys Chem Chem Phys; 2016 Jun; 18(24):16337-44. PubMed ID: 27254307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N; Medhekar N; Shukla A
    Phys Chem Chem Phys; 2018 Apr; 20(15):10345-10358. PubMed ID: 29610823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-semiconducting properties in silicene nanoribbons.
    Zhao YC; Ni J
    Phys Chem Chem Phys; 2014 Aug; 16(29):15477-82. PubMed ID: 24950009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure of BSb defective monolayers and nanoribbons.
    Ersan F; Gökoğlu G; Aktürk E
    J Phys Condens Matter; 2014 Aug; 26(32):325303. PubMed ID: 25049113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-dependent ballistic transport properties and electronic structures of pristine and edge-doped zigzag silicene nanoribbons: large magnetoresistance.
    Chen AB; Wang XF; Vasilopoulos P; Zhai MX; Liu YS
    Phys Chem Chem Phys; 2014 Mar; 16(11):5113-8. PubMed ID: 24477716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Armchair graphene nanoribbons with giant spin thermoelectric efficiency.
    Shirdel-Havar M; Farghadan R
    Phys Chem Chem Phys; 2018 Jun; 20(24):16853-16860. PubMed ID: 29892735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.