These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 24848775)
21. Enhanced luminescence intensity of near-infrared-sensitized upconversion nanoparticles via Ca Zhao J; Hu Y; Lin SW; Resch-Genger U; Zhang R; Wen J; Kong X; Qin A; Ou J J Mater Chem B; 2020 Aug; 8(30):6481-6489. PubMed ID: 32608451 [TBL] [Abstract][Full Text] [Related]
22. Assembling of a functional cyclodextrin-decorated upconversion luminescence nanoplatform for cysteine-sensing. Ni J; Shan C; Li B; Zhang L; Ma H; Luo Y; Song H Chem Commun (Camb); 2015 Sep; 51(74):14054-6. PubMed ID: 26247372 [TBL] [Abstract][Full Text] [Related]
23. Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces. Muhr V; Wilhelm S; Hirsch T; Wolfbeis OS Acc Chem Res; 2014 Dec; 47(12):3481-93. PubMed ID: 25347798 [TBL] [Abstract][Full Text] [Related]
24. Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe(3+) and MR Imaging. Wei R; Wei Z; Sun L; Zhang JZ; Liu J; Ge X; Shi L ACS Appl Mater Interfaces; 2016 Jan; 8(1):400-10. PubMed ID: 26702512 [TBL] [Abstract][Full Text] [Related]
25. Applications of upconversion nanoparticles in analytical and biomedical sciences: a review. Borse S; Rafique R; Murthy ZVP; Park TJ; Kailasa SK Analyst; 2022 Jul; 147(14):3155-3179. PubMed ID: 35730445 [TBL] [Abstract][Full Text] [Related]
26. A versatile luminescent resonance energy transfer (LRET)-based ratiometric upconversion nanoprobe for intracellular miRNA biosensing. Gong L; Liu S; Song Y; Xie S; Guo Z; Xu J; Xu L J Mater Chem B; 2020 Jul; 8(27):5952-5961. PubMed ID: 32667025 [TBL] [Abstract][Full Text] [Related]
27. Multicomponent nanocrystals with anti-Stokes luminescence as contrast agents for modern imaging techniques. Generalova AN; Chichkov BN; Khaydukov EV Adv Colloid Interface Sci; 2017 Jul; 245():1-19. PubMed ID: 28499601 [TBL] [Abstract][Full Text] [Related]
28. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Lin M; Zhao Y; Wang S; Liu M; Duan Z; Chen Y; Li F; Xu F; Lu T Biotechnol Adv; 2012; 30(6):1551-61. PubMed ID: 22561011 [TBL] [Abstract][Full Text] [Related]
29. Recent advances of lanthanide-doped upconversion nanoparticles for biological applications. Li H; Wang X; Huang D; Chen G Nanotechnology; 2020 Feb; 31(7):072001. PubMed ID: 31627201 [TBL] [Abstract][Full Text] [Related]
30. Nanostructures based on vanadium disulfide growing on UCNPs: simple synthesis, dual-mode imaging, and photothermal therapy. Wang S; Xi W; Wang Z; Zhao H; Zhao L; Fang J; Wang H; Sun L J Mater Chem B; 2020 Jul; 8(27):5883-5891. PubMed ID: 32538406 [TBL] [Abstract][Full Text] [Related]
31. DNA-assisted upconversion nanoplatform for imaging-guided synergistic therapy and laser-switchable drug detoxification. Li L; Hao P; Wei P; Fu L; Ai X; Zhang J; Zhou J Biomaterials; 2017 Aug; 136():43-55. PubMed ID: 28511143 [TBL] [Abstract][Full Text] [Related]
32. Upconversion in Nanostructured Materials: From Optical Tuning to Biomedical Applications. Sun T; Ai F; Zhu G; Wang F Chem Asian J; 2018 Feb; 13(4):373-385. PubMed ID: 29285898 [TBL] [Abstract][Full Text] [Related]
33. Dissolution-enhanced luminescent bioassay based on inorganic lanthanide nanoparticles. Zhou S; Zheng W; Chen Z; Tu D; Liu Y; Ma E; Li R; Zhu H; Huang M; Chen X Angew Chem Int Ed Engl; 2014 Nov; 53(46):12498-502. PubMed ID: 25131425 [TBL] [Abstract][Full Text] [Related]
34. One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery. Zhou L; Li Z; Liu Z; Yin M; Ren J; Qu X Nanoscale; 2014; 6(3):1445-52. PubMed ID: 24316678 [TBL] [Abstract][Full Text] [Related]
35. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Cheng L; Wang C; Liu Z Nanoscale; 2013 Jan; 5(1):23-37. PubMed ID: 23135546 [TBL] [Abstract][Full Text] [Related]
36. Facile preparation of well-defined hydrophilic core-shell upconversion nanoparticles for selective cell membrane glycan labeling and cancer cell imaging. Zhang W; Peng B; Tian F; Qin W; Qian X Anal Chem; 2014 Jan; 86(1):482-9. PubMed ID: 24294983 [TBL] [Abstract][Full Text] [Related]
37. Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking. Sun Y; Liu Q; Peng J; Feng W; Zhang Y; Yang P; Li F Biomaterials; 2013 Mar; 34(9):2289-95. PubMed ID: 23274071 [TBL] [Abstract][Full Text] [Related]
38. One-pot synthesis of PEG modified BaLuF₅:Gd/Yb/Er nanoprobes for dual-modal in vivo upconversion luminescence and X-ray bioimaging. Rao L; Lu W; Zeng T; Yi Z; Wang H; Liu H; Zeng S Dalton Trans; 2014 Sep; 43(35):13343-8. PubMed ID: 25070075 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of a novel core-shell nanocomposite Ag@SiO2@Lu2O3:Gd/Yb/Er for large enhancing upconversion luminescence and bioimaging. Yin D; Wang C; Ouyang J; Zhang X; Jiao Z; Feng Y; Song K; Liu B; Cao X; Zhang L; Han Y; Wu M ACS Appl Mater Interfaces; 2014; 6(21):18480-8. PubMed ID: 25279952 [TBL] [Abstract][Full Text] [Related]
40. A Versatile Strategy for Constructing Ratiometric Upconversion Luminescent Probe with Sensitized Emission of Energy Acceptor. Zuo M; Duan Q; Li C; Ge J; Wang Q; Li Z; Liu Z Anal Chem; 2021 Apr; 93(13):5635-5643. PubMed ID: 33749233 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]