BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24848978)

  • 1. The nanoscale geometrical maturation of focal adhesions controls stem cell differentiation and mechanotransduction.
    Gautrot JE; Malmström J; Sundh M; Margadant C; Sonnenberg A; Sutherland DS
    Nano Lett; 2014 Jul; 14(7):3945-52. PubMed ID: 24848978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Becoming stable and strong: the interplay between vinculin exchange dynamics and adhesion strength during adhesion site maturation.
    Möhl C; Kirchgessner N; Schäfer C; Küpper K; Born S; Diez G; Goldmann WH; Merkel R; Hoffmann B
    Cell Motil Cytoskeleton; 2009 Jun; 66(6):350-64. PubMed ID: 19422016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanotransduction and focal adhesions.
    Goldmann WH
    Cell Biol Int; 2012 Jul; 36(7):649-52. PubMed ID: 22524451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vinculin-p130Cas interaction is critical for focal adhesion dynamics and mechano-transduction.
    Goldmann WH
    Cell Biol Int; 2014 Mar; 38(3):283-6. PubMed ID: 24497348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vinculin in cell-cell and cell-matrix adhesions.
    Bays JL; DeMali KA
    Cell Mol Life Sci; 2017 Aug; 74(16):2999-3009. PubMed ID: 28401269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative mapping of averaged focal adhesion dynamics in migrating cells by shape normalization.
    Möhl C; Kirchgessner N; Schäfer C; Hoffmann B; Merkel R
    J Cell Sci; 2012 Jan; 125(Pt 1):155-65. PubMed ID: 22250204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac Differentiation Promotes Focal Adhesions Assembly through Vinculin Recruitment.
    Carton F; Casarella S; Di Francesco D; Zanella E; D'urso A; Di Nunno L; Fusaro L; Cotella D; Prat M; Follenzi A; Boccafoschi F
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct focal adhesion protein modules control different aspects of mechanotransduction.
    Stutchbury B; Atherton P; Tsang R; Wang DY; Ballestrem C
    J Cell Sci; 2017 May; 130(9):1612-1624. PubMed ID: 28302906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-resolution links vinculin localization to function in focal adhesions.
    Giannone G
    Nat Cell Biol; 2015 Jul; 17(7):845-7. PubMed ID: 26123111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One step ahead: role of filopodia in adhesion formation during cell migration of keratinocytes.
    Schäfer C; Borm B; Born S; Möhl C; Eibl EM; Hoffmann B
    Exp Cell Res; 2009 Apr; 315(7):1212-24. PubMed ID: 19100734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanotransduction: vinculin provides stability when tension rises.
    Spanjaard E; de Rooij J
    Curr Biol; 2013 Feb; 23(4):R159-61. PubMed ID: 23428328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential integrin expression regulates cell sensing of the matrix nanoscale geometry.
    Di Cio S; Bøggild TML; Connelly J; Sutherland DS; Gautrot JE
    Acta Biomater; 2017 Mar; 50():280-292. PubMed ID: 27940195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force-dependent vinculin binding to talin in live cells: a crucial step in anchoring the actin cytoskeleton to focal adhesions.
    Hirata H; Tatsumi H; Lim CT; Sokabe M
    Am J Physiol Cell Physiol; 2014 Mar; 306(6):C607-20. PubMed ID: 24452377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption.
    Kirchner J; Kam Z; Tzur G; Bershadsky AD; Geiger B
    J Cell Sci; 2003 Mar; 116(Pt 6):975-86. PubMed ID: 12584242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions.
    Case LB; Baird MA; Shtengel G; Campbell SL; Hess HF; Davidson MW; Waterman CM
    Nat Cell Biol; 2015 Jul; 17(7):880-92. PubMed ID: 26053221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of implant surface cell adhesion: characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates.
    Biggs MJ; Richards RG; Gadegaard N; Wilkinson CD; Dalby MJ
    J Orthop Res; 2007 Feb; 25(2):273-82. PubMed ID: 17106874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanopatterning of fibronectin and the influence of integrin clustering on endothelial cell spreading and proliferation.
    Slater JH; Frey W
    J Biomed Mater Res A; 2008 Oct; 87(1):176-95. PubMed ID: 18085648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of the response of human endothelial colony-forming cells by focal adhesion assembly using gradient nanopattern plates.
    Cui LH; Joo HJ; Kim DH; Seo HR; Kim JS; Choi SC; Huang LH; Na JE; Lim IR; Kim JH; Rhyu IJ; Hong SJ; Lee KB; Lim DS
    Acta Biomater; 2018 Jan; 65():272-282. PubMed ID: 29037896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Correlation of Nanotopography with Cell Spreading via Focal Adhesions Using Adipose-Derived Stem Cells.
    Yun YS; Kang EH; Ji S; Lee SB; Kim YO; Yun IS; Yeo JS
    Adv Biosyst; 2020 Aug; 4(8):e2000092. PubMed ID: 32500640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the dynamics of shear stress-induced structural changes in endothelial cells.
    Mott RE; Helmke BP
    Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1616-26. PubMed ID: 17855768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.