These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24849117)

  • 21. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resting-state networks of the neonate brain identified using independent component analysis.
    Rajasilta O; Tuulari JJ; Björnsdotter M; Scheinin NM; Lehtola SJ; Saunavaara J; Häkkinen S; Merisaari H; Parkkola R; Lähdesmäki T; Karlsson L; Karlsson H
    Dev Neurobiol; 2020 Mar; 80(3-4):111-125. PubMed ID: 32267069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Granger causal influence predicts BOLD activity levels in the default mode network.
    Jiao Q; Lu G; Zhang Z; Zhong Y; Wang Z; Guo Y; Li K; Ding M; Liu Y
    Hum Brain Mapp; 2011 Jan; 32(1):154-61. PubMed ID: 21157880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resting state functional network disruptions in a kainic acid model of temporal lobe epilepsy.
    Gill RS; Mirsattari SM; Leung LS
    Neuroimage Clin; 2017; 13():70-81. PubMed ID: 27942449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reorganization of rich-clubs in functional brain networks during propofol-induced unconsciousness and natural sleep.
    Wang S; Li Y; Qiu S; Zhang C; Wang G; Xian J; Li T; He H
    Neuroimage Clin; 2020; 25():102188. PubMed ID: 32018124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data.
    Deshpande G; Santhanam P; Hu X
    Neuroimage; 2011 Jan; 54(2):1043-52. PubMed ID: 20850549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subspecialization in the human posterior medial cortex.
    Bzdok D; Heeger A; Langner R; Laird AR; Fox PT; Palomero-Gallagher N; Vogt BA; Zilles K; Eickhoff SB
    Neuroimage; 2015 Feb; 106():55-71. PubMed ID: 25462801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency-dependent functional connectivity in resting state networks.
    Samogin J; Marino M; Porcaro C; Wenderoth N; Dupont P; Swinnen SP; Mantini D
    Hum Brain Mapp; 2020 Dec; 41(18):5187-5198. PubMed ID: 32840936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain.
    Sforazzini F; Schwarz AJ; Galbusera A; Bifone A; Gozzi A
    Neuroimage; 2014 Feb; 87():403-15. PubMed ID: 24080504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structural-functional connectome and the default mode network of the human brain.
    Horn A; Ostwald D; Reisert M; Blankenburg F
    Neuroimage; 2014 Nov; 102 Pt 1():142-51. PubMed ID: 24099851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks.
    Jann K; Gee DG; Kilroy E; Schwab S; Smith RX; Cannon TD; Wang DJ
    Neuroimage; 2015 Feb; 106():111-22. PubMed ID: 25463468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis.
    Fransson P; Marrelec G
    Neuroimage; 2008 Sep; 42(3):1178-84. PubMed ID: 18598773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI.
    Hiltunen T; Kantola J; Abou Elseoud A; Lepola P; Suominen K; Starck T; Nikkinen J; Remes J; Tervonen O; Palva S; Kiviniemi V; Palva JM
    J Neurosci; 2014 Jan; 34(2):356-62. PubMed ID: 24403137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T.
    Habas C
    Neuroradiology; 2010 Jan; 52(1):47-59. PubMed ID: 19629462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-scale directional connections among multi resting-state neural networks in human brain: a functional MRI and Bayesian network modeling study.
    Li R; Chen K; Fleisher AS; Reiman EM; Yao L; Wu X
    Neuroimage; 2011 Jun; 56(3):1035-42. PubMed ID: 21396456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease.
    Zhang HY; Wang SJ; Xing J; Liu B; Ma ZL; Yang M; Zhang ZJ; Teng GJ
    Behav Brain Res; 2009 Jan; 197(1):103-8. PubMed ID: 18786570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial heterogeneity of the relation between resting-state connectivity and blood flow: an important consideration for pharmacological studies.
    Khalili-Mahani N; van Osch MJ; de Rooij M; Beckmann CF; van Buchem MA; Dahan A; van Gerven JM; Rombouts SA
    Hum Brain Mapp; 2014 Mar; 35(3):929-42. PubMed ID: 23281174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.
    Chen JE; Glover GH
    Neuroimage; 2015 Feb; 107():207-218. PubMed ID: 25497686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.