These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24849267)

  • 1. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.
    Vakarelski IU; Chan DY; Thoroddsen ST
    Soft Matter; 2014 Aug; 10(31):5662-8. PubMed ID: 24849267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.
    Jetly A; Vakarelski IU; Thoroddsen ST
    Soft Matter; 2018 Feb; 14(9):1608-1613. PubMed ID: 29411833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.
    Vakarelski IU; Patankar NA; Marston JO; Chan DY; Thoroddsen ST
    Nature; 2012 Sep; 489(7415):274-7. PubMed ID: 22972299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drag Moderation by the Melting of an Ice Surface in Contact with Water.
    Vakarelski IU; Chan DY; Thoroddsen ST
    Phys Rev Lett; 2015 Jul; 115(4):044501. PubMed ID: 26252689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).
    Ahmmed KM; Patience C; Kietzig AM
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27411-27419. PubMed ID: 27649381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Grafting Hydrophilic Polymeric Layer for Stable Drag Reduction.
    Tian C; Wang X; Liu Y; Yang W; Hu H; Pei X; Zhou F
    Langmuir; 2019 Jun; 35(22):7205-7211. PubMed ID: 31083953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic air layer on textured superhydrophobic surfaces.
    Vakarelski IU; Chan DY; Marston JO; Thoroddsen ST
    Langmuir; 2013 Sep; 29(35):11074-81. PubMed ID: 23919719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable-streamlined cavities following the impact of non-superhydrophobic spheres on water.
    Vakarelski IU; Jetly A; Thoroddsen ST
    Soft Matter; 2019 Aug; 15(31):6278-6287. PubMed ID: 31322158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drag reduction by Leidenfrost vapor layers.
    Vakarelski IU; Marston JO; Chan DY; Thoroddsen ST
    Phys Rev Lett; 2011 May; 106(21):214501. PubMed ID: 21699302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids.
    Vakarelski IU; Berry JD; Chan DY; Thoroddsen ST
    Phys Rev Lett; 2016 Sep; 117(11):114503. PubMed ID: 27661694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma-Textured Teflon: Repulsion in Air of Water Droplets and Drag Reduction Underwater.
    Di Mundo R; Bottiglione F; Notarnicola M; Palumbo F; Pascazio G
    Biomimetics (Basel); 2017 Jan; 2(1):. PubMed ID: 31105164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired Cavity Regulation on Superhydrophobic Spheres for Drag Reduction in an Aqueous Medium.
    Yao C; Zhang J; Xue Z; Yu K; Yu X; Yang X; Qu Q; Gan W; Wang J; Jiang L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4796-4803. PubMed ID: 33448779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D simulations of hydrodynamic drag forces on two porous spheres moving along their centerline.
    Wu RM; Lin MH; Lin HY; Hsu RY
    J Colloid Interface Sci; 2006 Sep; 301(1):227-35. PubMed ID: 16730016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of surface topography and wettability on the Leidenfrost effect.
    Zhong L; Guo Z
    Nanoscale; 2017 May; 9(19):6219-6236. PubMed ID: 28470271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobic copper tubes with possible flow enhancement and drag reduction.
    Shirtcliffe NJ; McHale G; Newton MI; Zhang Y
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1316-23. PubMed ID: 20355928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body surface adaptations to boundary-layer dynamics.
    Videler JJ
    Symp Soc Exp Biol; 1995; 49():1-20. PubMed ID: 8571218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-determined shapes and velocities of giant near-zero drag gas cavities.
    Vakarelski IU; Klaseboer E; Jetly A; Mansoor MM; Aguirre-Pablo AA; Chan DYC; Thoroddsen ST
    Sci Adv; 2017 Sep; 3(9):e1701558. PubMed ID: 28913434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
    Cheng M; Zhang S; Dong H; Han S; Wei H; Shi F
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4275-82. PubMed ID: 25644454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips.
    Hu H; Wen J; Bao L; Jia L; Song D; Song B; Pan G; Scaraggi M; Dini D; Xue Q; Zhou F
    Sci Adv; 2017 Sep; 3(9):e1603288. PubMed ID: 28879234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.