BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24849655)

  • 1. Combination use of protein-protein interaction network topological features improves the predictive scores of deleterious non-synonymous single-nucleotide polymorphisms.
    Wu Y; Jing R; Jiang L; Jiang Y; Kuang Q; Ye L; Yang L; Li Y; Li M
    Amino Acids; 2014 Aug; 46(8):2025-35. PubMed ID: 24849655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information.
    Bao L; Cui Y
    Bioinformatics; 2005 May; 21(10):2185-90. PubMed ID: 15746281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information.
    Capriotti E; Calabrese R; Casadio R
    Bioinformatics; 2006 Nov; 22(22):2729-34. PubMed ID: 16895930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms in human cytochromes P450.
    Wang LL; Li Y; Zhou SF
    Drug Metab Dispos; 2009 May; 37(5):977-91. PubMed ID: 19204079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting disease-associated substitution of a single amino acid by analyzing residue interactions.
    Li Y; Wen Z; Xiao J; Yin H; Yu L; Yang L; Li M
    BMC Bioinformatics; 2011 Jan; 12():14. PubMed ID: 21223604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotype prediction of deleterious nonsynonymous single nucleotide polymorphisms in human alcohol metabolism-related genes: a bioinformatics study.
    Wang LL; Yang AK; Li Y; Liu JP; Zhou SF
    Alcohol; 2010 Aug; 44(5):425-38. PubMed ID: 20804942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting deleterious non-synonymous single nucleotide polymorphisms in signal peptides based on hybrid sequence attributes.
    Qin W; Li Y; Li J; Yu L; Wu D; Jing R; Pu X; Guo Y; Li M
    Comput Biol Chem; 2012 Feb; 36():31-5. PubMed ID: 22277674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNAP: predict effect of non-synonymous polymorphisms on function.
    Bromberg Y; Rost B
    Nucleic Acids Res; 2007; 35(11):3823-35. PubMed ID: 17526529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knowledge-based computational mutagenesis for predicting the disease potential of human non-synonymous single nucleotide polymorphisms.
    Masso M; Vaisman II
    J Theor Biol; 2010 Oct; 266(4):560-8. PubMed ID: 20655929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting deleterious nsSNPs: an analysis of sequence and structural attributes.
    Dobson RJ; Munroe PB; Caulfield MJ; Saqi MA
    BMC Bioinformatics; 2006 Apr; 7():217. PubMed ID: 16630345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candidate nsSNPs that can affect the functions and interactions of cell cycle proteins.
    Savas S; Ahmad MF; Shariff M; Kim DY; Ozcelik H
    Proteins; 2005 Feb; 58(3):697-705. PubMed ID: 15617026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteins and domains vary in their tolerance of non-synonymous single nucleotide polymorphisms (nsSNPs).
    Yates CM; Sternberg MJ
    J Mol Biol; 2013 Apr; 425(8):1274-86. PubMed ID: 23357174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes.
    Nakken S; Alseth I; Rognes T
    Neuroscience; 2007 Apr; 145(4):1273-9. PubMed ID: 17055652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources.
    Karchin R; Diekhans M; Kelly L; Thomas DJ; Pieper U; Eswar N; Haussler D; Sali A
    Bioinformatics; 2005 Jun; 21(12):2814-20. PubMed ID: 15827081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational identification of non-synonymous polymorphisms within regions corresponding to protein interaction sites.
    Skrlj B; Kunej T
    Comput Biol Med; 2016 Dec; 79():30-35. PubMed ID: 27744178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico prediction of deleterious single amino acid polymorphisms from amino acid sequence.
    Li S; Xi L; Li J; Wang C; Lei B; Shen Y; Liu H; Yao X; Li B
    J Comput Chem; 2011 May; 32(7):1211-6. PubMed ID: 21425278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotype prediction of non-synonymous single-nucleotide polymorphisms in human ATP-binding cassette transporter genes.
    Wang LL; Liu YH; Meng LL; Li CG; Zhou SF
    Basic Clin Pharmacol Toxicol; 2011 Feb; 108(2):94-114. PubMed ID: 20849526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Analysis of Damaging Single-Nucleotide Polymorphisms and Their Structural and Functional Impact on the Insulin Receptor.
    Mahmud Z; Malik SU; Ahmed J; Azad AK
    Biomed Res Int; 2016; 2016():2023803. PubMed ID: 27840822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale analysis of non-synonymous coding region single nucleotide polymorphisms.
    Clifford RJ; Edmonson MN; Nguyen C; Buetow KH
    Bioinformatics; 2004 May; 20(7):1006-14. PubMed ID: 14751981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.