These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 24849659)
1. Characterization of natural antisense transcript, sclerotia development and secondary metabolism by strand-specific RNA sequencing of Aspergillus flavus. Wu X; Zhou B; Yin C; Guo Y; Lin Y; Pan L; Wang B PLoS One; 2014; 9(5):e97814. PubMed ID: 24849659 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery. Chang PK; Scharfenstein LL; Mack B; Yu J; Ehrlich KC Fungal Genet Biol; 2014 Jul; 68():39-47. PubMed ID: 24780887 [TBL] [Abstract][Full Text] [Related]
3. New Insights of Transcriptional Regulator AflR in Aspergillus flavus Physiology. Wang P; Xu J; Chang PK; Liu Z; Kong Q Microbiol Spectr; 2022 Feb; 10(1):e0079121. PubMed ID: 35080432 [TBL] [Abstract][Full Text] [Related]
4. RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus. Gilbert MK; Mack BM; Wei Q; Bland JM; Bhatnagar D; Cary JW Microbiol Res; 2016 Jan; 182():150-61. PubMed ID: 26686623 [TBL] [Abstract][Full Text] [Related]
5. The PHD Transcription Factor Rum1 Regulates Morphogenesis and Aflatoxin Biosynthesis in Hu Y; Yang G; Zhang D; Liu Y; Li Y; Lin G; Guo Z; Wang S; Zhuang Z Toxins (Basel); 2018 Jul; 10(7):. PubMed ID: 30036940 [No Abstract] [Full Text] [Related]
6. PbsB Regulates Morphogenesis, Aflatoxin B1 Biosynthesis, and Pathogenicity of Yuan J; Chen Z; Guo Z; Li D; Zhang F; Shen J; Zhang Y; Wang S; Zhuang Z Front Cell Infect Microbiol; 2018; 8():162. PubMed ID: 29868518 [TBL] [Abstract][Full Text] [Related]
8. The effect of temperature on Natural Antisense Transcript (NAT) expression in Aspergillus flavus. Smith CA; Robertson D; Yates B; Nielsen DM; Brown D; Dean RA; Payne GA Curr Genet; 2008 Nov; 54(5):241-69. PubMed ID: 18813928 [TBL] [Abstract][Full Text] [Related]
9. Differential regulation of mycelial growth and aflatoxin biosynthesis by Aspergillus flavus under different temperatures as revealed by strand-specific RNA-Seq. Han G; Zhao K; Yan X; Xiang F; Li X; Tao F Microbiologyopen; 2019 Oct; 8(10):e897. PubMed ID: 31328901 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome Sequencing Revealed an Inhibitory Mechanism of Yang K; Geng Q; Song F; He X; Hu T; Wang S; Tian J Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977505 [TBL] [Abstract][Full Text] [Related]
11. Deep sequencing analysis of transcriptomes in Aspergillus flavus in response to resveratrol. Wang H; Lei Y; Yan L; Cheng K; Dai X; Wan L; Guo W; Cheng L; Liao B BMC Microbiol; 2015 Sep; 15():182. PubMed ID: 26420172 [TBL] [Abstract][Full Text] [Related]
12. Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites. Chang PK; Scharfenstein LL; Li RW; Arroyo-Manzanares N; De Saeger S; Diana Di Mavungu J Fungal Genet Biol; 2017 Jul; 104():29-37. PubMed ID: 28442441 [TBL] [Abstract][Full Text] [Related]
13. Integrative analyses reveal transcriptome-proteome correlation in biological pathways and secondary metabolism clusters in A. flavus in response to temperature. Bai Y; Wang S; Zhong H; Yang Q; Zhang F; Zhuang Z; Yuan J; Nie X; Wang S Sci Rep; 2015 Sep; 5():14582. PubMed ID: 26416011 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the velvet regulators in Aspergillus flavus. Eom TJ; Moon H; Yu JH; Park HS J Microbiol; 2018 Dec; 56(12):893-901. PubMed ID: 30361976 [TBL] [Abstract][Full Text] [Related]
15. Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis. Chang PK; Scharfenstein LL; Mack B; Ehrlich KC Appl Environ Microbiol; 2012 Nov; 78(21):7557-63. PubMed ID: 22904054 [TBL] [Abstract][Full Text] [Related]
16. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Chang PK; Scharfenstein LL; Li P; Ehrlich KC Fungal Genet Biol; 2013; 58-59():71-9. PubMed ID: 23994319 [TBL] [Abstract][Full Text] [Related]
17. NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production. Cary JW; Harris-Coward PY; Ehrlich KC; Mack BM; Kale SP; Larey C; Calvo AM Eukaryot Cell; 2012 Sep; 11(9):1104-11. PubMed ID: 22798394 [TBL] [Abstract][Full Text] [Related]
18. The proportion of non-aflatoxigenic strains of the Aspergillus flavus/oryzae complex from meju by analyses of the aflatoxin biosynthetic genes. Hong SB; Lee M; Kim DH; Chung SH; Shin HD; Samson RA J Microbiol; 2013 Dec; 51(6):766-72. PubMed ID: 24385353 [TBL] [Abstract][Full Text] [Related]
19. RNA-Seq-based transcriptome analysis of aflatoxigenic Aspergillus flavus in response to water activity. Zhang F; Guo Z; Zhong H; Wang S; Yang W; Liu Y; Wang S Toxins (Basel); 2014 Nov; 6(11):3187-207. PubMed ID: 25421810 [TBL] [Abstract][Full Text] [Related]
20. Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Woloshuk CP; Foutz KR; Brewer JF; Bhatnagar D; Cleveland TE; Payne GA Appl Environ Microbiol; 1994 Jul; 60(7):2408-14. PubMed ID: 8074521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]