BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24849696)

  • 1. Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution.
    Poor CB; Andorfer MC; Lewis JC
    Chembiochem; 2014 Jun; 15(9):1286-9. PubMed ID: 24849696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution of RebH for site-selective halogenation of large biologically active molecules.
    Payne JT; Poor CB; Lewis JC
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4226-30. PubMed ID: 25678465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered RebH Halogenase Variants Demonstrating a Specificity Switch from Tryptophan towards Novel Indole Compounds.
    Sana B; Ho T; Kannan S; Ke D; Li EHY; Seayad J; Verma CS; Duong HA; Ghadessy FJ
    Chembiochem; 2021 Sep; 22(18):2791-2798. PubMed ID: 34240527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halogenase Engineering for the Generation of New Natural Product Analogues.
    Brown S; O'Connor SE
    Chembiochem; 2015 Oct; 16(15):2129-35. PubMed ID: 26256103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal.
    Moritzer AC; Minges H; Prior T; Frese M; Sewald N; Niemann HH
    J Biol Chem; 2019 Feb; 294(7):2529-2542. PubMed ID: 30559288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor.
    Glenn WS; Nims E; O'Connor SE
    J Am Chem Soc; 2011 Dec; 133(48):19346-9. PubMed ID: 22050348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding and Improving the Activity of Flavin-Dependent Halogenases via Random and Targeted Mutagenesis.
    Andorfer MC; Lewis JC
    Annu Rev Biochem; 2018 Jun; 87():159-185. PubMed ID: 29589959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Flavin-Dependent Halogenases.
    Payne JT; Andorfer MC; Lewis JC
    Methods Enzymol; 2016; 575():93-126. PubMed ID: 27417926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis.
    Yeh E; Garneau S; Walsh CT
    Proc Natl Acad Sci U S A; 2005 Mar; 102(11):3960-5. PubMed ID: 15743914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselective arene halogenation using the FAD-dependent halogenase RebH.
    Payne JT; Andorfer MC; Lewis JC
    Angew Chem Int Ed Engl; 2013 May; 52(20):5271-4. PubMed ID: 23592388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the Biocatalytic Potential of Fe/α-Ketoglutarate-Dependent Halogenases.
    Voss M; Honda Malca S; Buller R
    Chemistry; 2020 Jun; 26(33):7336-7345. PubMed ID: 31968136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens.
    Büchler J; Malca SH; Patsch D; Voss M; Turner NJ; Bornscheuer UT; Allemann O; Le Chapelain C; Lumbroso A; Loiseleur O; Buller R
    Nat Commun; 2022 Jan; 13(1):371. PubMed ID: 35042883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halogenase engineering and its utility in medicinal chemistry.
    Fraley AE; Sherman DH
    Bioorg Med Chem Lett; 2018 Jun; 28(11):1992-1999. PubMed ID: 29731363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed Evolution of Flavin-Dependent Halogenases for Site- and Atroposelective Halogenation of 3-Aryl-4(3
    Snodgrass HM; Mondal D; Lewis JC
    J Am Chem Soc; 2022 Sep; 144(36):16676-16682. PubMed ID: 36044712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and action of the myxobacterial chondrochloren halogenase CndH: a new variant of FAD-dependent halogenases.
    Buedenbender S; Rachid S; Müller R; Schulz GE
    J Mol Biol; 2009 Jan; 385(2):520-30. PubMed ID: 19000696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Insights into Converting Hydroxide Adenosyltransferase into Halogenase.
    Jiang Y; Yao M; Feng J; Niu H; Qiao B; Li B; Wang B; Xiao W; Dong M; Yuan Y
    J Agric Food Chem; 2024 Jun; 72(22):12685-12695. PubMed ID: 38771136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Evolution of RebH for Catalyst-Controlled Halogenation of Indole C-H Bonds.
    Andorfer MC; Park HJ; Vergara-Coll J; Lewis JC
    Chem Sci; 2016 Jun; 7(6):3720-3729. PubMed ID: 27347367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application and Modification of Flavin-Dependent Halogenases.
    van Pée KH; Milbredt D; Patallo EP; Weichold V; Gajewi M
    Methods Enzymol; 2016; 575():65-92. PubMed ID: 27417925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Single-Component Flavin Reductase/Flavin-Dependent Halogenase AetF is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins.
    Jiang Y; Snodgrass HM; Zubi YS; Roof CV; Guan Y; Mondal D; Honeycutt NH; Lee JW; Lewis RD; Martinez CA; Lewis JC
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202214610. PubMed ID: 36282507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic halogenation of tryptophan on a gram scale.
    Frese M; Sewald N
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):298-301. PubMed ID: 25394328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.