These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24849899)

  • 1. Preliminary production of 211At at the Texas A&M University Cyclotron Institute.
    Martin TM; Bhakta V; Al-Harbi A; Hackemack M; Tabacaru G; Tribble R; Shankar S; Akabani G
    Health Phys; 2014 Jul; 107(1):1-9. PubMed ID: 24849899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of α-particle emitting ²¹¹At using 45 MeV α-beam.
    Kim G; Chun K; Park SH; Kim B
    Phys Med Biol; 2014 Jun; 59(11):2849-60. PubMed ID: 24819557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of an internal cyclotron target for the production of 211At via the 209Bi (alpha,2n)211 at reaction.
    Larsen RH; Wieland BW; Zalutsky MR
    Appl Radiat Isot; 1996 Feb; 47(2):135-43. PubMed ID: 8852627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal shielding design for bunkers of compact cyclotrons used in the production of medical radionuclides.
    Facure A; França WF
    Med Phys; 2010 Dec; 37(12):6332-7. PubMed ID: 21302790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimisation study of alpha-cyclotron production of At-211/Po-211g for high-LET metabolic radiotherapy purposes.
    Groppi F; Bonardi ML; Birattari C; Menapace E; Abbas K; Holzwarth U; Alfarano A; Morzenti S; Zona C; Alfassi ZB
    Appl Radiat Isot; 2005; 63(5-6):621-31. PubMed ID: 16055338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the neutron field in the vicinity of an unshielded PET cyclotron.
    Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R
    Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of thermal neutron flux around a PET cyclotron.
    Ogata Y; Ishigure N; Mochizuki S; Ito K; Hatano K; Abe J; Miyahara H; Masumoto K; Nakamura H
    Health Phys; 2011 May; 100 Suppl 2():S60-6. PubMed ID: 21451309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical shielding calculations for a proton therapy facility.
    Avery S; Ainsley C; Maughan R; McDonough J
    Radiat Prot Dosimetry; 2008; 131(2):167-79. PubMed ID: 18487617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting induced activity in the Havar foils of the (18)F production targets of a PET cyclotron and derived radiological risk.
    Martinez-Serrano JJ; Diez de Los Rios A
    Health Phys; 2014 Aug; 107(2):103-10. PubMed ID: 24978281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of Y-86 and other radiometals for research purposes using a solution target system.
    Oehlke E; Hoehr C; Hou X; Hanemaayer V; Zeisler S; Adam MJ; Ruth TJ; Celler A; Buckley K; Benard F; Schaffer P
    Nucl Med Biol; 2015 Nov; 42(11):842-9. PubMed ID: 26264926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities.
    Zanzonico P; Dauer L; St Germain J
    Health Phys; 2008 Nov; 95(5):554-70. PubMed ID: 18849690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo neutron doses estimations inside a PET cyclotron vault room.
    Barquero R; Méndez R; Martí-Climent JM; Quincoces G
    Radiat Prot Dosimetry; 2007; 126(1-4):477-81. PubMed ID: 17504752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron measurements in the vicinity of a self-shielded PET cyclotron.
    Hertel NE; Shannon MP; Wang ZL; Valenzano MP; Mengesha W; Crowe RJ
    Radiat Prot Dosimetry; 2004; 108(3):255-61. PubMed ID: 15031447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production.
    Kambali I; Suryanto H; Parwanto
    Australas Phys Eng Sci Med; 2016 Jun; 39(2):403-12. PubMed ID: 26867652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of radionuclidic impurities in cyclotron produced (99m)Tc.
    Lebeda O; van Lier EJ; Štursa J; Ráliš J; Zyuzin A
    Nucl Med Biol; 2012 Nov; 39(8):1286-91. PubMed ID: 22796396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of cyclotron production parameters for the 209Bi(alpha, 2n) 211At reaction related to biomedical use of 211At.
    Henriksen G; Messelt S; Olsen E; Larsen RH
    Appl Radiat Isot; 2001 May; 54(5):839-44. PubMed ID: 11258534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-yield cyclotron production of
    Nelson BJB; Wilson J; Schultz MK; Andersson JD; Wuest F
    Nucl Med Biol; 2023; 116-117():108314. PubMed ID: 36708660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and improvement of cyclotron thallium target room shield.
    Hajiloo N; Raisali G; Aslani G
    Radiat Prot Dosimetry; 2008; 130(4):427-33. PubMed ID: 18417490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.
    Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.