These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24849928)

  • 1. Effect of polyethylene glycol, alkyl, and oligonucleotide spacers on the binding, secondary structure, and self-assembly of fractalkine binding FKN-S2 aptamer-amphiphiles.
    Waybrant B; Pearce TR; Kokkoli E
    Langmuir; 2014 Jul; 30(25):7465-74. PubMed ID: 24849928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of spacers on the self-assembly of DNA aptamer-amphiphiles into micelles and nanotapes.
    Pearce TR; Waybrant B; Kokkoli E
    Chem Commun (Camb); 2014 Jan; 50(2):210-2. PubMed ID: 24216758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and characterization of an aptamer binding ligand of fractalkine using domain targeted SELEX.
    Waybrant B; Pearce TR; Wang P; Sreevatsan S; Kokkoli E
    Chem Commun (Camb); 2012 Oct; 48(80):10043-5. PubMed ID: 22936337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of an Aptamer-Amphiphile for the Detection of β-Lactoglobulin on a Liquid Crystal Interface.
    Clemente APB; Kuang H; Shabana AM; Labuza TP; Kokkoli E
    Bioconjug Chem; 2019 Nov; 30(11):2763-2770. PubMed ID: 31589417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.
    Pearce TR; Kokkoli E
    Soft Matter; 2015 Jan; 11(1):109-17. PubMed ID: 25370121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer micelles targeting fractalkine-expressing cancer cells in vitro and in vivo.
    Harris MA; Pearce TR; Pengo T; Kuang H; Forster C; Kokkoli E
    Nanomedicine; 2018 Jan; 14(1):85-96. PubMed ID: 28912042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ssDNA-amphiphile architecture used to control dimensions of DNA nanotubes.
    Kuang H; Gartner Iii TE; Dorneles de Mello M; Guo J; Zuo X; Tsapatsis M; Jayaraman A; Kokkoli E
    Nanoscale; 2019 Nov; 11(42):19850-19861. PubMed ID: 31559999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of linker and spacer on the design of a fibronectin-mimetic peptide evaluated via cell studies and AFM adhesion forces.
    Craig JA; Rexeisen EL; Mardilovich A; Shroff K; Kokkoli E
    Langmuir; 2008 Sep; 24(18):10282-92. PubMed ID: 18693703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment of endogenous fractalkine and anti-inflammatory cells via aptamer-functionalized hydrogels.
    Enam SF; Krieger JR; Saxena T; Watts BE; Olingy CE; Botchwey EA; Bellamkonda RV
    Biomaterials; 2017 Oct; 142():52-61. PubMed ID: 28727998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular Assembly of Single-Tail ssDNA-Amphiphiles through π-π Interactions.
    Kuang H; Wang D; Schneiderman Z; Tsapatsis M; Kokkoli E
    Bioconjug Chem; 2022 Nov; 33(11):2035-2040. PubMed ID: 35699360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self assembly of a model amphiphilic phenylalanine peptide/polyethylene glycol block copolymer in aqueous solution.
    Castelletto V; Hamley IW
    Biophys Chem; 2009 May; 141(2-3):169-74. PubMed ID: 19232813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of G-quadruplex and duplex domains within the secondary structure of 31-mer DNA thrombin-binding aptamer.
    Dolinnaya NG; Yuminova AV; Spiridonova VA; Arutyunyan AM; Kopylov AM
    J Biomol Struct Dyn; 2012; 30(5):524-31. PubMed ID: 22734515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of the effect of aptamer immobilization strategies on the interaction between cell and its aptamer using atomic force spectroscopy.
    Wang Q; Luo B; Yang X; Wang K; Liu L; Du S; Li Z
    J Mol Recognit; 2016 Apr; 29(4):151-8. PubMed ID: 26530526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of an alkyl spacer on the morphology and internalization of MUC1 aptamer-naphthalimide amphiphiles for targeting and imaging triple negative breast cancer cells.
    Kuang H; Schneiderman Z; Shabana AM; Russo GC; Guo J; Wirtz D; Kokkoli E
    Bioeng Transl Med; 2021 Jan; 6(1):e10194. PubMed ID: 33532593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleavable cationic antibacterial amphiphiles: synthesis, mechanism of action, and cytotoxicities.
    Hoque J; Akkapeddi P; Yarlagadda V; Uppu DS; Kumar P; Haldar J
    Langmuir; 2012 Aug; 28(33):12225-34. PubMed ID: 22838496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of model DNA-binding peptide amphiphiles.
    Bitton R; Schmidt J; Biesalski M; Tu R; Tirrell M; Bianco-Peled H
    Langmuir; 2005 Dec; 21(25):11888-95. PubMed ID: 16316129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system.
    Nonaka Y; Yoshida W; Abe K; Ferri S; Schulze H; Bachmann TT; Ikebukuro K
    Anal Chem; 2013 Jan; 85(2):1132-7. PubMed ID: 23237717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered Aptamer-Organic Amphiphile Self-Assemblies for Biomedical Applications: Progress and Challenges.
    Xiong H; Liu L; Wang Y; Jiang H; Wang X
    Small; 2022 Jan; 18(4):e2104341. PubMed ID: 34622570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIV-integrase aptamer folds into a parallel quadruplex: a thermodynamic study.
    Kelley S; Boroda S; Musier-Forsyth K; Kankia BI
    Biophys Chem; 2011 May; 155(2-3):82-8. PubMed ID: 21435774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of water with the G-quadruplex loop contributes to the binding energy of G-quadruplex to protein.
    Nagatoishi S; Sugimoto N
    Mol Biosyst; 2012 Oct; 8(10):2766-70. PubMed ID: 22851057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.