These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. Kar P; Lipowsky R; Knecht V J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718 [TBL] [Abstract][Full Text] [Related]
4. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study. Leonis G; Steinbrecher T; Papadopoulos MG J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches. Srivastava HK; Sastry GN J Chem Inf Model; 2012 Nov; 52(11):3088-98. PubMed ID: 23121465 [TBL] [Abstract][Full Text] [Related]
6. Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease. Oehme DP; Brownlee RT; Wilson DJ J Comput Chem; 2012 Dec; 33(32):2566-80. PubMed ID: 22915442 [TBL] [Abstract][Full Text] [Related]
7. Revisiting MMPBSA by Adoption of MC-Based Surface Area/Volume, ANI-ML Potentials, and Two-Valued Interior Dielectric Constant. Akkus E; Tayfuroglu O; Yildiz M; Kocak A J Phys Chem B; 2023 May; 127(20):4415-4429. PubMed ID: 37171911 [TBL] [Abstract][Full Text] [Related]
8. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis. Wang C; Nguyen PH; Pham K; Huynh D; Le TB; Wang H; Ren P; Luo R J Comput Chem; 2016 Oct; 37(27):2436-46. PubMed ID: 27510546 [TBL] [Abstract][Full Text] [Related]
9. Computational studies of darunavir into HIV-1 protease and DMPC bilayer: necessary conditions for effective binding and the role of the flaps. Leonis G; Czyżnikowska Ż; Megariotis G; Reis H; Papadopoulos MG J Chem Inf Model; 2012 Jun; 52(6):1542-58. PubMed ID: 22587384 [TBL] [Abstract][Full Text] [Related]
10. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. Valdés-Tresanco MS; Valdés-Tresanco ME; Valiente PA; Moreno E J Chem Theory Comput; 2021 Oct; 17(10):6281-6291. PubMed ID: 34586825 [TBL] [Abstract][Full Text] [Related]
11. Statistical Analysis on the Performance of Molecular Mechanics Poisson-Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study. Aldeghi M; Bodkin MJ; Knapp S; Biggin PC J Chem Inf Model; 2017 Sep; 57(9):2203-2221. PubMed ID: 28786670 [TBL] [Abstract][Full Text] [Related]
12. Dual inhibitors for aspartic proteases HIV-1 PR and renin: advancements in AIDS-hypertension-diabetes linkage via molecular dynamics, inhibition assays, and binding free energy calculations. Tzoupis H; Leonis G; Megariotis G; Supuran CT; Mavromoustakos T; Papadopoulos MG J Med Chem; 2012 Jun; 55(12):5784-96. PubMed ID: 22621689 [TBL] [Abstract][Full Text] [Related]
13. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method. Xie L; Liu H J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. Hou T; Yu R J Med Chem; 2007 Mar; 50(6):1177-88. PubMed ID: 17300185 [TBL] [Abstract][Full Text] [Related]
15. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Lepsík M; Kríz Z; Havlas Z Proteins; 2004 Nov; 57(2):279-93. PubMed ID: 15340915 [TBL] [Abstract][Full Text] [Related]
16. Binding mode prediction and MD/MMPBSA-based free energy ranking for agonists of REV-ERBα/NCoR. Westermaier Y; Ruiz-Carmona S; Theret I; Perron-Sierra F; Poissonnet G; Dacquet C; Boutin JA; Ducrot P; Barril X J Comput Aided Mol Des; 2017 Aug; 31(8):755-775. PubMed ID: 28712038 [TBL] [Abstract][Full Text] [Related]
17. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces. Simões IC; Costa IP; Coimbra JT; Ramos MJ; Fernandes PA J Chem Inf Model; 2017 Jan; 57(1):60-72. PubMed ID: 27936711 [TBL] [Abstract][Full Text] [Related]
18. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Ferrari AM; Degliesposti G; Sgobba M; Rastelli G Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536 [TBL] [Abstract][Full Text] [Related]
19. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations. Hu GD; Zhu T; Zhang SL; Wang D; Zhang QG Eur J Med Chem; 2010 Jan; 45(1):227-35. PubMed ID: 19910081 [TBL] [Abstract][Full Text] [Related]
20. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Miller BR; McGee TD; Swails JM; Homeyer N; Gohlke H; Roitberg AE J Chem Theory Comput; 2012 Sep; 8(9):3314-21. PubMed ID: 26605738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]